題目列表(包括答案和解析)
4. m>2或m<-2 解析:因?yàn)閒(x)=在(-1,1)內(nèi)有零點(diǎn),所以f(-1)f(1)<0,即(2+m)(2-m)<0,則m>2或m<-2
隨機(jī)變量的所有等可能取值為1,2…,n,若,則( )
A. n=3 B.n=4 C. n=5 D.不能確定
5.m=-3,n=2 解析:因?yàn)?img width=127 height=24 src="http://thumb.zyjl.cn/pic1/1899/sx/81/253081.gif">的兩零點(diǎn)分別是1與2,所以,即,解得
6.解析:因?yàn)?img width=95 height=24 src="http://thumb.zyjl.cn/pic1/1899/sx/86/253086.gif">只有一個(gè)零點(diǎn),所以方程只有一個(gè)根,因此,所以
甲 | 乙 | |
1 | ||
2 | ||
3 | ||
4 |
某苗圃基地為了解基地內(nèi)甲、乙兩塊地種植的同一種樹苗的長勢情況,從兩塊地各隨機(jī)抽取了10株樹苗,分別測出它們的高度如下(單位:cm)
甲:19 20 21 23 25 29 32 33 37 41
乙:10 26 30 30 34 37 44 46 46 47
甲 | 乙 | |
1 | ||
2 | ||
3 | ||
4 |
(1)用莖葉圖表示上述兩組數(shù)據(jù),并對(duì)兩塊地抽取樹苗的高度的平均數(shù)和中位數(shù)進(jìn)行比較,寫出兩個(gè)統(tǒng)計(jì)結(jié)論;
(2)現(xiàn)苗圃基地將甲、乙兩塊地的樹苗合在一起,按高度分成一、二兩個(gè)等級(jí),每個(gè)等級(jí)按不同的價(jià)格出售.某市綠化部門下屬的2個(gè)單位計(jì)劃購買甲、乙兩地種植的樹苗.已知每個(gè)單位購買每個(gè)等級(jí)樹苗所需費(fèi)用均為5萬元,且每個(gè)單位對(duì)每個(gè)等級(jí)樹苗買和不買的可能性各占一半,求該市綠化部門此次采購所需資金總額X的分布列及數(shù)學(xué)期望值E(X).
在甲、乙兩個(gè)盒子中分別裝有標(biāo)號(hào)為1、2、3、4的四個(gè)球,現(xiàn)從甲、乙兩個(gè)盒子中各取出1個(gè)球,每個(gè)小球被取出的可能性相等。
(1)求取出的兩個(gè)球上標(biāo)號(hào)為相鄰整數(shù)的概率;
(2)求取出的兩個(gè)球上標(biāo)號(hào)之和能被3整除的概率.
【解析】本試題主要考查了古典概型概率的求解。第一問中,基本事件數(shù)為共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),
(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)
總數(shù)為16種.其中取出的兩個(gè)小球上標(biāo)號(hào)為相鄰整數(shù)的基本事件有:
(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6種利用古典概型可知,P=3 /8 ;
(2)其中取出的兩個(gè)小球上標(biāo)號(hào)之和能被3整除的基本事件有:
(1,2),(2,1),(2,4),(3,3),(4,2)共5種可得概率值5 /16 ;
解:甲、乙兩個(gè)盒子里各取出1個(gè)小球計(jì)為(X,Y)則基本事件
共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),
(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)
總數(shù)為16種.
(1)其中取出的兩個(gè)小球上標(biāo)號(hào)為相鄰整數(shù)的基本事件有:
(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6種
故取出的兩個(gè)小球上標(biāo)號(hào)為相鄰整數(shù)的概率P=3 /8 ;
(2)其中取出的兩個(gè)小球上標(biāo)號(hào)之和能被3整除的基本事件有:
(1,2),(2,1),(2,4),(3,3),(4,2)共5種
故取出的兩個(gè)小球上標(biāo)號(hào)之和能被3整除的概率為5 /16 ;
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com