又a1∈Z,故a1=11或a1=12.所以.所有可能的數(shù)列{an}的通項公式是an=12-n和an=13-n,n=1,2,3,- 查看更多

 

題目列表(包括答案和解析)

((本小題共13分)

若數(shù)列滿足,數(shù)列數(shù)列,記=.

(Ⅰ)寫出一個滿足,且〉0的數(shù)列;

(Ⅱ)若,n=2000,證明:E數(shù)列是遞增數(shù)列的充要條件是=2011;

(Ⅲ)對任意給定的整數(shù)n(n≥2),是否存在首項為0的E數(shù)列,使得=0?如果存在,寫出一個滿足條件的E數(shù)列;如果不存在,說明理由。

【解析】:(Ⅰ)0,1,2,1,0是一具滿足條件的E數(shù)列A5。

(答案不唯一,0,1,0,1,0也是一個滿足條件的E的數(shù)列A5

(Ⅱ)必要性:因為E數(shù)列A5是遞增數(shù)列,所以.所以A5是首項為12,公差為1的等差數(shù)列.所以a2000=12+(2000—1)×1=2011.充分性,由于a2000—a10001,a2000—a10001……a2—a11所以a2000—a19999,即a2000a1+1999.又因為a1=12,a2000=2011,所以a2000=a1+1999.故是遞增數(shù)列.綜上,結論得證。

 

 

查看答案和解析>>

已知函數(shù)f(x)(x∈R)滿足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實數(shù)x只有一個.

(1)求函數(shù)f(x)的表達式;

(2)若數(shù)列{an}滿足a1,an+1=f(an),bn-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項公式;

(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).

【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.

由f(x)=2x只有一解,即=2x,

也就是2ax2-2(1+b)x=0(a≠0)只有一解,

∴b=-1.∴a=-1.故f(x)=.…………………………………………4分

(2)an+1=f(an)=(n∈N*),bn-1, ∴,

∴{bn}為等比數(shù)列,q=.又∵a1,∴b1-1=

bn=b1qn-1n-1n(n∈N*).……………………………9分

(3)證明:∵anbn=an=1-an=1-,

∴a1b1+a2b2+…+anbn+…+<+…+

=1-<1(n∈N*).

 

查看答案和解析>>

已知:數(shù)列{an}的通項公式為an=3n-1(n∈N*),等差數(shù)列{bn}中,bn>0且b1+b2+b3=15又a1+b1,a2+b2,a3+b3成等比.求:
(1)數(shù)列{bn}的通項公式.
(2)設數(shù)列cn=
1bn2-1
(n∈N*),求數(shù)列{cn}的前n項和.

查看答案和解析>>

已知α為銳角,且tanα=
2
-1
,函數(shù)f(x)=x2tan2α+x•sin(2α+
π
4
)
,數(shù)列{an}的首項a1=
1
2
 , an+1=f(an)

(1)求函數(shù)f(x)的表達式;
(2)求證:an+1>an;
(3)求證:1<
1
1+a1
+
1
1+a2
+…+
1
1+an
<2  (n≥2 , n∈N*)

查看答案和解析>>

(2011•綿陽一模)已知函數(shù)f(x)定義在區(qū)間(-1,1)上,f(
1
2
)=-1,且當x,y∈(-1,1)時,恒有f(x)-f(y)=f(
x-y
1-xy
).又數(shù)列{an}滿足,a1=
1
2
,an+1=
2an
1+an2

(I )證明:f(x)在(-1,1)上是奇函數(shù)
( II )求f(an)的表達式;
(III)設bn=-
1
2f(an)
,Tn為數(shù)列{bn}的前n項和,試問是否存在正整數(shù)m,n,使得
4Tn-m
4Tn+1-m
1
2
成立?若存在,求出這樣的正整數(shù);若不存在,請說明理由.

查看答案和解析>>


同步練習冊答案