題目列表(包括答案和解析)
2 |
5 |
7 |
9 |
一個袋中裝有大小相同的黑球、白球和紅球.已知袋中共有10個球.從袋中任意摸出1個球,得到黑球的概率是;從袋中任意摸出2個球,至少得到1個白球的概率是.求:
(1)從中任意摸出2個球,得到的都是黑球的概率;
(2)袋中白球的個數(shù).
一個袋中裝有大小相同的黑球和白球共9個,從中任取3個球,記隨機變量為取出3球中白球的個數(shù),已知.
(Ⅰ)求袋中白球的個數(shù);
(Ⅱ)求隨機變量的分布列及其數(shù)學期望.
(10分)一個袋中裝有大小相同的黑球、白球和紅球. 已知袋中共有10個球,從中任意摸出
1個球,得到黑球的概率是,從中任意摸出2個球,至少得到1 個白球的概率是. 求:
(1)從中任意摸出2個球,得到的都是黑球的概率;(2)袋中白球的個數(shù)
(10分)一個袋中裝有大小相同的黑球、白球和紅球. 已知袋中共有10個球,從中任意摸出1個球,得到黑球的概率是,從中任意摸出2個球,至少得到1 個白球的概率是. 求:
(1)從中任意摸出2個球,得到的都是黑球的概率;
(2)袋中白球的個數(shù)
一、選擇題:(每小題5分,共50分)
題號
1
2
3
4
5
6
7
8
9
10
答案
B
D
B
A
C
C
D
A
A
B
二、填空題:(每小題4分,共24分)
11.; 12.; 13.; 14.; 15.4 16.120
三、解答題:(共76分,以下各題為累計得分,其他解法請相應給分)
17.解:(I)
由,得。
又當時,得
(Ⅱ)當
即時函數(shù)遞增。
故的單調增區(qū)間為,
又由,得,
由
解得
故使成立的的集合是
18.解:(I)設袋中有白球個,由題意得,
即
解得或(舍),故有白球6個
(法二,設黑球有個,則全是黑球的概率為 由
即,解得或(舍),故有黑球4個,白球6個
(Ⅱ),
0
1
2
3
P
故分布列為
數(shù)學期望
19.解:(I)取AB的中點O,連接OP,OC PA=PB POAB
又在中,,
在中,,又,故有
又,面ABC
又PO面PAB,面PAB面ABC
(Ⅱ)以O為坐標原點, 分別以OB,OC,OP為軸,軸,軸建立坐標系,
如圖,則A
設平面PAC的一個法向量為。
得
令,則
設直線PB與平面PAC所成角為
于是
20.解:(I)由題意設C的方程為由,得。
設直線的方程為,由
②代入①化簡整理得
因直線與拋物線C相交于不同的兩點,
故
即,解得又時僅交一點,
(Ⅱ)設,由由(I)知
21.解:(I)當時,
設曲線與在公共點()處的切線相同,則有
即 解得或(舍)
又故得公共點為,
切線方程為 ,即
(Ⅱ),設在()處切線相同,
故有
即
由①,得(舍)
于是
令,則
于是當即時,,故在上遞增。
當,即時,,故在上遞減
在處取最大值。
當時,b取得最大值
22.解:(I)的對稱軸為,又當時,,
故在[0,1]上是增函數(shù)
即
(Ⅱ)
由
得
①―②得 即
當時,,當時,
于是
設存在正整數(shù),使對,恒成立。
當時,,即
當時,
。
當時,,當時,,當時,
存在正整數(shù)或8,對于任意正整數(shù)都有成立。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com