題目列表(包括答案和解析)
(本題滿(mǎn)分18分) 本題共有3個(gè)小題,第1小題滿(mǎn)分4分,第2小題滿(mǎn)分6分. 第3小題滿(mǎn)分8分.
(理)對(duì)于數(shù)列,從中選取若干項(xiàng),不改變它們?cè)谠瓉?lái)數(shù)列中的先后次序,得到的數(shù)列稱(chēng)為是原來(lái)數(shù)列的一個(gè)子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為正整數(shù),公比為正整數(shù)的無(wú)窮等比數(shù)列的子數(shù)列問(wèn)題. 為此,他任取了其中三項(xiàng).
(1) 若成等比數(shù)列,求之間滿(mǎn)足的等量關(guān)系;
(2) 他猜想:“在上述數(shù)列中存在一個(gè)子數(shù)列是等差數(shù)列”,為此,他研究了與的大小關(guān)系,請(qǐng)你根據(jù)該同學(xué)的研究結(jié)果來(lái)判斷上述猜想是否正確;
(3) 他又想:在首項(xiàng)為正整數(shù),公差為正整數(shù)的無(wú)窮等差數(shù)列中是否存在成等比數(shù)列的子數(shù)列?請(qǐng)你就此問(wèn)題寫(xiě)出一個(gè)正確命題,并加以證明.
(本題滿(mǎn)分18分) 本題共有3個(gè)小題,第1小題滿(mǎn)分4分,第2小題滿(mǎn)分6分. 第3小題滿(mǎn)分8分.
(理)對(duì)于數(shù)列,從中選取若干項(xiàng),不改變它們?cè)谠瓉?lái)數(shù)列中的先后次序,得到的數(shù)列稱(chēng)為是原來(lái)數(shù)列的一個(gè)子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為正整數(shù),公比為正整數(shù)的無(wú)窮等比數(shù)列的子數(shù)列問(wèn)題. 為此,他任取了其中三項(xiàng).
(1) 若成等比數(shù)列,求之間滿(mǎn)足的等量關(guān)系;
(2) 他猜想:“在上述數(shù)列中存在一個(gè)子數(shù)列是等差數(shù)列”,為此,他研究了與的大小關(guān)系,請(qǐng)你根據(jù)該同學(xué)的研究結(jié)果來(lái)判斷上述猜想是否正確;
(3) 他又想:在首項(xiàng)為正整數(shù),公差為正整數(shù)的無(wú)窮等差數(shù)列中是否存在成等比數(shù)列的子數(shù)列?請(qǐng)你就此問(wèn)題寫(xiě)出一個(gè)正確命題,并加以證明.
某高中為調(diào)查了解學(xué)生體能狀況,按年級(jí)采用分層抽樣的方法從所有學(xué)生中抽取360人進(jìn)行體育達(dá)標(biāo)測(cè)試.該校高二年級(jí)共有學(xué)生1200人,高一、高二、高三三個(gè)年級(jí)的人數(shù)依次成等差數(shù)列.
(Ⅰ)若從高一年級(jí)中抽取了100人,求從高三年級(jí)中抽取了多少人?
(Ⅱ)體育測(cè)試共有三個(gè)項(xiàng)目:分別是100米跑、立定跳遠(yuǎn)、擲實(shí)心球.已知被抽到的某同學(xué)每個(gè)項(xiàng)目的測(cè)試合格與不合格是等可能的,求該同學(xué)三項(xiàng)測(cè)試中有且只有兩項(xiàng)合格的概率.
本題共有3個(gè)小題,第1小題滿(mǎn)分4分,第2小題滿(mǎn)分6分,第3小題滿(mǎn)分8分.
從數(shù)列中取出部分項(xiàng),并將它們按原來(lái)的順序組成一個(gè)數(shù)列,稱(chēng)之為數(shù)列的一個(gè)子數(shù)列.
設(shè)數(shù)列是一個(gè)首項(xiàng)為、公差為的無(wú)窮等差數(shù)列.
(1)若,,成等比數(shù)列,求其公比.
(2)若,從數(shù)列中取出第2項(xiàng)、第6項(xiàng)作為一個(gè)等比數(shù)列的第1項(xiàng)、第2項(xiàng),試問(wèn)該數(shù)列是否為的無(wú)窮等比子數(shù)列,請(qǐng)說(shuō)明理由.
(3)若,從數(shù)列中取出第1項(xiàng)、第項(xiàng)(設(shè))作為一個(gè)等比數(shù)列的第1項(xiàng)、第2項(xiàng),試問(wèn)當(dāng)且僅當(dāng)為何值時(shí),該數(shù)列為的無(wú)窮等比子數(shù)列,請(qǐng)說(shuō)明理由.
一. 填空題(每題4分,共48分)
1. {0}; 2. 四; 3. 12; 4. 0; 5. 4; 6. 理、文7; 7. 理
二.選擇題(每題4分,共16分)
13.D; 14.B; 15.C; 16.理B、文B.
三. 解答題. 17.(本題滿(mǎn)分12分)解:由已知得 (3分)
∴, ∴ (6分)
∴ 又,即,∴ (9分)
∴的面積S=. (12分)
18.(本題滿(mǎn)分12分)解:∵,∴ (5分)
∵,欲使是純虛數(shù),
而=
(7分)
∴, 即
(11分)
∴當(dāng)時(shí),是純虛數(shù).
(12分)
19.(本題滿(mǎn)分14分,第1小題滿(mǎn)分9分,第2小題滿(mǎn)分5分)
解:(1)依題意設(shè),則, (2分)
(4分) 而,
∴,即, (6分) ∴ (7分)
從而. (9分)
(2)平面,
∴直線(xiàn)到平面的距離即點(diǎn)到平面的距離 (2分)
也就是的斜邊上的高,為. (5分)
20.(本題滿(mǎn)分14分,第1小題滿(mǎn)分8分,第2小題滿(mǎn)分6分)
解:(1)不正確.
(2分)
沒(méi)有考慮到還可以小于.
(3分)
正確解答如下:
令,則,
當(dāng)時(shí),,即
(5分)
當(dāng)時(shí),,即
(7分)
∴或,即既無(wú)最大值,也無(wú)最小值.
(8分)
(2)(理)對(duì)于函數(shù),令
①當(dāng)時(shí),有最小值,,
(9分)
當(dāng)時(shí),,即,當(dāng)時(shí),即
∴或,即既無(wú)最大值,也無(wú)最小值.
(10分)
②當(dāng)時(shí),有最小值,,
此時(shí),,∴,即,既無(wú)最大值,也無(wú)最小值 .(11分)
③當(dāng)時(shí),有最小值,,即 (12分)
∴,即,
∴當(dāng)時(shí),有最大值,沒(méi)有最小值.
(13分)
∴當(dāng)時(shí),既無(wú)最大值,也無(wú)最小值。
當(dāng)時(shí),有最大值,此時(shí);沒(méi)有最小值.
(14分)
(文)∵, ∴ (12分)
∴函數(shù)的最大值為(當(dāng)時(shí))而無(wú)最小值. (14分)
21.(本滿(mǎn)分16分,第1、2小題滿(mǎn)分各4分,第3小題滿(mǎn)分8分)
解:(1) (4分)
(2)由解得 (7分)
所以第個(gè)月更換刀具. (8分)
(3)第個(gè)月產(chǎn)生的利潤(rùn)是: (9分)
個(gè)月的總利潤(rùn):(11分)
個(gè)月的平均利潤(rùn): (13分)
由 且
在第7個(gè)月更換刀具,可使這7個(gè)月的平均利潤(rùn)最大(13.21萬(wàn)元) (14分)此時(shí)刀具厚度為(mm) (16分)
22.(本題滿(mǎn)分18分,第1、2小題滿(mǎn)分各4分,第3小題滿(mǎn)分10分)
解:(1) (4分)
(2)各點(diǎn)的橫坐標(biāo)為: (8分)
(3)過(guò)作斜率為的直線(xiàn)交拋物線(xiàn)于另一點(diǎn), (9分)
則一般性的結(jié)論可以是:
點(diǎn) 的相鄰橫坐標(biāo)之和構(gòu)成以為首項(xiàng)和公比的等比數(shù)列(或:點(diǎn)無(wú)限趨向于某一定點(diǎn),且其橫(縱)坐標(biāo)之差成等比數(shù)列;或:無(wú)限趨向于某一定點(diǎn),且其橫(縱)坐標(biāo)之差成等比數(shù)列,等)(12分)
證明:設(shè)過(guò)點(diǎn)作斜率為的直線(xiàn)交拋物線(xiàn)于點(diǎn)由
得或;
點(diǎn)的橫坐標(biāo)為,則 (14分)
于是兩式相減得: (16分)
=
故點(diǎn)無(wú)限逼近于點(diǎn)
同理無(wú)限逼近于點(diǎn) (18分)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com