11.在復(fù)平面內(nèi).如果復(fù)數(shù)所對應(yīng)的點在第三象限.則方程所表示的曲線的焦點坐標(biāo)是 . 查看更多

 

題目列表(包括答案和解析)

定義:對于映射 f:A→B,如果A中的不同元素有不同的象,且B中的每一個元素都有原象,則稱 f:A→B為一一映射.如果存在對應(yīng)關(guān)系φ ,使A到B成為一一映射,則稱A和B具有相同的勢.給出下列命題:
①A={奇數(shù)},B={偶數(shù)},則A和B 具有相同的勢;
②A是直角坐標(biāo)系平面內(nèi)所有點形成的集合,B是復(fù)數(shù)集,則A和B 不具有相同的勢;
③若A= ,其中 是不共線向量,B={ |共面的任意向量},則A和B不可能具有相同的勢;
④若區(qū)間A=(-1,1) ,B=(-∞,+∞) ,則A和B具有相同的勢.
其中真命題為(    )

查看答案和解析>>

定義:對于映射f:A→B,如果A中的不同元素有不同的象,且B中的每一個元素都有原象,則稱f:A→B為一一映射.如果存在對應(yīng)關(guān)系φ,使A到B成為一一映射,則稱A和B具有相同的勢.給出下列命題:
①A={奇數(shù)},B={偶數(shù)},則A和B 具有相同的勢;
②A是直角坐標(biāo)系平面內(nèi)所有點形成的集合,B是復(fù)數(shù)集,則A和B 不具有相同的勢;
③若A={
a
b
},其中
a
,
b
是不共線向量,B={
c
|
c
a
b
共面的任意向量},則A和B不可能具有相同的勢;
④若區(qū)間A=(-1,1),B=(-∞,+∞),則A和B具有相同的勢.
其中真命題為
①③④
①③④

查看答案和解析>>

定義:對于映射f:A→B,如果A中的不同元素有不同的象,且B中的每一個元素都有原象,則稱f:A→B為一一映射.如果存在對應(yīng)關(guān)系φ,使A到B成為一一映射,則稱A和B具有相同的勢.給出下列命題:
①A={奇數(shù)},B={偶數(shù)},則A和B 具有相同的勢;
②A是直角坐標(biāo)系平面內(nèi)所有點形成的集合,B是復(fù)數(shù)集,則A和B 不具有相同的勢;
③若A={,},其中是不共線向量,B={|,共面的任意向量},則A和B不可能具有相同的勢;
④若區(qū)間A=(-1,1),B=(-∞,+∞),則A和B具有相同的勢.
其中真命題為   

查看答案和解析>>

在復(fù)平面內(nèi), 是原點,向量對應(yīng)的復(fù)數(shù)是,=2+i。

(Ⅰ)如果點A關(guān)于實軸的對稱點為點B,求向量對應(yīng)的復(fù)數(shù);

(Ⅱ)復(fù)數(shù),對應(yīng)的點C,D。試判斷A、B、C、D四點是否在同一個圓上?并證明你的結(jié)論。

【解析】第一問中利用復(fù)數(shù)的概念可知得到由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i  ∵ (2+i)(-2i)=2-4i,      ∴  =

第二問中,由題意得,=(2,1)  ∴

同理,所以A、B、C、D四點到原點O的距離相等,

∴A、B、C、D四點在以O(shè)為圓心,為半徑的圓上

(Ⅰ)由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i     3分

     ∵ (2+i)(-2i)=2-4i,      ∴  =                 2分

(Ⅱ)A、B、C、D四點在同一個圓上。                              2分

證明:由題意得,=(2,1)  ∴

  同理,所以A、B、C、D四點到原點O的距離相等,

∴A、B、C、D四點在以O(shè)為圓心,為半徑的圓上

 

查看答案和解析>>

定義:對于映射f:A→B,如果A中的不同元素有不同的象,且B中的每一個元素都有原象,則稱f:A→B為一一映射.如果存在對應(yīng)關(guān)系φ,使A到B成為一一映射,則稱A和B具有相同的.給出下列命題:

①A={奇數(shù)},B={偶數(shù)},則A和B具有相同的;

②A是直角坐標(biāo)系平面內(nèi)所有點形成的集合,B是復(fù)數(shù)集,則A和B不具有相同的;

③若A={,},其中是不共線向量,B={|共面的任意向量},則A和B不可能具有相同的勢;

④若區(qū)間A=(-1,1),B=(-∞,+∞),則A和B具有相同的

其中真命題為________.

查看答案和解析>>

一. 填空題(每題4分,共48分)

1. {0};   2. 四;   3. 12;   4. 0;   5. 4;   6. 理、文7;   7. 理2a、文4;

8. 0.25;    9. 126;    10. 18;    11. ;    12. (或).

二.選擇題(每題4分,共16分)

13.D;  14.B;  15.C;  16.理B、文B.

三. 解答題.  17.(本題滿分12分)解:由已知得     (3分)

,  ∴           (6分)

,即,∴         (9分)

的面積S=.            (12分)

18.(本題滿分12分)解:∵,∴       (5分)

,欲使是純虛數(shù),

=                      (7分)
   ∴,  即                     (11分)
   ∴當(dāng)時,是純虛數(shù).                      (12分)

19.(本題滿分14分,第1小題滿分9分,第2小題滿分5分)

解:(1)依題意設(shè),則,                (2分)

       (4分)    而,

,即,    (6分)    ∴       (7分)

從而.                            (9分)

(2)平面,

∴直線到平面的距離即點到平面的距離           (2分)

也就是的斜邊上的高,為.                (5分)

20.(本題滿分14分,第1小題滿分8分,第2小題滿分6分)

解:(1)不正確.                          (2分)
   沒有考慮到還可以小于.                  (3分)
   正確解答如下:
   令,則,
   當(dāng)時,,即                  (5分)
   當(dāng)時,,即                  (7分)
   ∴,即既無最大值,也無最小值.           (8分)

(2)(理)對于函數(shù),令
  ①當(dāng)時,有最小值,,                   (9分)

當(dāng)時,,即,當(dāng)時,即

,即既無最大值,也無最小值.           (10分)
  ②當(dāng)時,有最小值,, 

此時,,∴,即,既無最大值,也無最小值       .(11分)
  ③當(dāng)時,有最小值,,即   (12分)
,即
∴當(dāng)時,有最大值,沒有最小值.             (13分)
∴當(dāng)時,既無最大值,也無最小值。
 當(dāng)時,有最大值,此時;沒有最小值.      (14分)

(文)∵,    ∴             (12分)

∴函數(shù)的最大值為(當(dāng)時)而無最小值.     (14分)

21.(本滿分16分,第1、2小題滿分各4分,第3小題滿分8分)

解:(1)                            (4分)

(2)由解得                            (7分)

所以第個月更換刀具.                                       (8分)

(3)第個月產(chǎn)生的利潤是:   (9分)

個月的總利潤:(11分)

個月的平均利潤:     (13分)

 且

在第7個月更換刀具,可使這7個月的平均利潤最大(13.21萬元) (14分)此時刀具厚度為(mm)                  (16分)

22.(本題滿分18分,第1、2小題滿分各4分,第3小題滿分10分)

解:(1)              (4分)

(2)各點的橫坐標(biāo)為:           (8分)

(3)過作斜率為的直線交拋物線于另一點,            (9分)

則一般性的結(jié)論可以是:

的相鄰橫坐標(biāo)之和構(gòu)成以為首項和公比的等比數(shù)列(或:點無限趨向于某一定點,且其橫(縱)坐標(biāo)之差成等比數(shù)列;或:無限趨向于某一定點,且其橫(縱)坐標(biāo)之差成等比數(shù)列,等)(12分)

證明:設(shè)過點作斜率為的直線交拋物線于點

          得;       

的橫坐標(biāo)為,則               (14分)

于是兩式相減得:            (16分)

=  

故點無限逼近于點      

同理無限逼近于點                          (18分)

 

 

 


同步練習(xí)冊答案