對(duì)于問(wèn)題“已知函數(shù).問(wèn)函數(shù)是否存在最大值或最小值?若存在.求出最大值或最小值,若不存在.說(shuō)明理由. 一個(gè)同學(xué)給出了如下解答: 查看更多

 

題目列表(包括答案和解析)

已知函數(shù),且函數(shù)f(x)與g(x)的圖象關(guān)于直線y=x對(duì)稱,又g(1)=0,f()=2-
(1)求f(x)的表達(dá)式及值域;
(2)問(wèn)是否存在實(shí)數(shù)m,使得命題p:f(m2-m)<f(3m-4)和q:滿足復(fù)合命題p且q為真命題?若存在,求出m的取值范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

已知函數(shù),且函數(shù)f(x)與g(x)的圖象關(guān)于直線y=x對(duì)稱,又g(1)=0,f()=2-
(1)求f(x)的表達(dá)式及值域;
(2)問(wèn)是否存在實(shí)數(shù)m,使得命題p:f(m2-m)<f(3m-4)和q:滿足復(fù)合命題p且q為真命題?若存在,求出m的取值范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

已知函數(shù),k為非零實(shí)數(shù).

(Ⅰ)設(shè)t=k2,若函數(shù)f(x),g(x)在區(qū)間(0,+∞)上單調(diào)性相同,求k的取值范圍;

(Ⅱ)是否存在正實(shí)數(shù)k,都能找到t∈[1,2],使得關(guān)于x的方程f(x)=g(x)在[1,5]上有且僅有一個(gè)實(shí)數(shù)根,且在[-5,-1]上至多有一個(gè)實(shí)數(shù)根.若存在,請(qǐng)求出所有k的值的集合;若不存在,請(qǐng)說(shuō)明理由.

 

【解析】本試題考查了運(yùn)用導(dǎo)數(shù)來(lái)研究函數(shù)的單調(diào)性,并求解參數(shù)的取值范圍。與此同時(shí)還能對(duì)于方程解的問(wèn)題,轉(zhuǎn)化為圖像與圖像的交點(diǎn)問(wèn)題來(lái)長(zhǎng)處理的數(shù)學(xué)思想的運(yùn)用。

 

查看答案和解析>>

已知函數(shù)f(x)=ax+b
1+x2
(x≥0)
,且函數(shù)f(x)與g(x)的圖象關(guān)于直線y=x對(duì)稱,又g(1)=0,f(
3
)=2-
3

(1)求f(x)的表達(dá)式及值域;
(2)問(wèn)是否存在實(shí)數(shù)m,使得命題p:f(m2-m)<f(3m-4)和q:g(
m-1
4
)>
3
4
滿足復(fù)合命題p且q為真命題?若存在,求出m的取值范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

已知函數(shù)f(x)=log2x
(Ⅰ)若f(x)的反函數(shù)是函數(shù)y=g(x),解方程g(2x)=2g(x)+10;
(Ⅱ)對(duì)于任意a、b、c∈[M,+∞),M>1且a≥b≥c.當(dāng)a,b,c能作為一個(gè)三角形的三邊長(zhǎng)時(shí),f(a)、f(b)、f(c)也總能作為某個(gè)三角形的三邊長(zhǎng),試分別探究下面兩個(gè)問(wèn)題:
(1)當(dāng)1<M<2時(shí),是否存在a、b、c∈[M,+∞),且a≥b≥c,當(dāng)a、b、c能作為一個(gè)三角形的三邊長(zhǎng)時(shí),以f(a)、f(b)、f(c)不能作為三角形的三邊長(zhǎng).
(2)M≥2,證明:對(duì)于任a、b、c∈[M,+∞),且a≥b≥c,當(dāng)a、b、c能作為一個(gè)三角形的三邊長(zhǎng)時(shí),f(a)、f(b)、f(c)總能作為三角形的三邊長(zhǎng).

查看答案和解析>>

一. 填空題(每題4分,共48分)

1. {0};   2. 四;   3. 12;   4. 0;   5. 4;   6. 理、文7;   7. 理2a、文4;

8. 0.25;    9. 126;    10. 18;    11. ;    12. (或).

二.選擇題(每題4分,共16分)

13.D;  14.B;  15.C;  16.理B、文B.

三. 解答題.  17.(本題滿分12分)解:由已知得     (3分)

,  ∴           (6分)

,即,∴         (9分)

的面積S=.            (12分)

18.(本題滿分12分)解:∵,∴       (5分)

,欲使是純虛數(shù),

=                      (7分)
   ∴,  即                     (11分)
   ∴當(dāng)時(shí),是純虛數(shù).                      (12分)

19.(本題滿分14分,第1小題滿分9分,第2小題滿分5分)

解:(1)依題意設(shè),則,                (2分)

       (4分)    而,

,即,    (6分)    ∴       (7分)

從而.                            (9分)

(2)平面

∴直線到平面的距離即點(diǎn)到平面的距離           (2分)

也就是的斜邊上的高,為.                (5分)

20.(本題滿分14分,第1小題滿分8分,第2小題滿分6分)

解:(1)不正確.                          (2分)
   沒(méi)有考慮到還可以小于.                  (3分)
   正確解答如下:
   令,則,
   當(dāng)時(shí),,即                  (5分)
   當(dāng)時(shí),,即                  (7分)
   ∴,即既無(wú)最大值,也無(wú)最小值.           (8分)

(2)(理)對(duì)于函數(shù),令
  ①當(dāng)時(shí),有最小值,,                   (9分)

當(dāng)時(shí),,即,當(dāng)時(shí),即

,即既無(wú)最大值,也無(wú)最小值.           (10分)
  ②當(dāng)時(shí),有最小值,, 

此時(shí),,∴,即,既無(wú)最大值,也無(wú)最小值       .(11分)
  ③當(dāng)時(shí),有最小值,,即   (12分)
,即,
∴當(dāng)時(shí),有最大值,沒(méi)有最小值.             (13分)
∴當(dāng)時(shí),既無(wú)最大值,也無(wú)最小值。
 當(dāng)時(shí),有最大值,此時(shí);沒(méi)有最小值.      (14分)

(文)∵,    ∴             (12分)

∴函數(shù)的最大值為(當(dāng)時(shí))而無(wú)最小值.     (14分)

21.(本滿分16分,第1、2小題滿分各4分,第3小題滿分8分)

解:(1)                            (4分)

(2)由解得                            (7分)

所以第個(gè)月更換刀具.                                       (8分)

(3)第個(gè)月產(chǎn)生的利潤(rùn)是:   (9分)

個(gè)月的總利潤(rùn):(11分)

個(gè)月的平均利潤(rùn):     (13分)

 且

在第7個(gè)月更換刀具,可使這7個(gè)月的平均利潤(rùn)最大(13.21萬(wàn)元) (14分)此時(shí)刀具厚度為(mm)                  (16分)

22.(本題滿分18分,第1、2小題滿分各4分,第3小題滿分10分)

解:(1)              (4分)

(2)各點(diǎn)的橫坐標(biāo)為:           (8分)

(3)過(guò)作斜率為的直線交拋物線于另一點(diǎn),            (9分)

則一般性的結(jié)論可以是:

點(diǎn) 的相鄰橫坐標(biāo)之和構(gòu)成以為首項(xiàng)和公比的等比數(shù)列(或:點(diǎn)無(wú)限趨向于某一定點(diǎn),且其橫(縱)坐標(biāo)之差成等比數(shù)列;或:無(wú)限趨向于某一定點(diǎn),且其橫(縱)坐標(biāo)之差成等比數(shù)列,等)(12分)

證明:設(shè)過(guò)點(diǎn)作斜率為的直線交拋物線于點(diǎn)

          得;       

點(diǎn)的橫坐標(biāo)為,則               (14分)

于是兩式相減得:            (16分)

=  

故點(diǎn)無(wú)限逼近于點(diǎn)      

同理無(wú)限逼近于點(diǎn)                          (18分)

 

 

 


同步練習(xí)冊(cè)答案