題目列表(包括答案和解析)
已知R,函數(shù).
⑴若函數(shù)沒有零點(diǎn),求實(shí)數(shù)的取值范圍;
⑵若函數(shù)存在極大值,并記為,求的表達(dá)式;
⑶當(dāng)時(shí),求證:.
【解析】(1)求導(dǎo)研究函數(shù)f(x)的最值,說明函數(shù)f(x)的最大值<0,或f(x)的最小值>0.
(2)根據(jù)第(1)問的求解過程,直接得到g(m).
(3)構(gòu)造函數(shù),證明即可,然后利用導(dǎo)數(shù)求g(x)的最小值.
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.02 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.02 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
4x+a |
x2+1 |
12 |
5 |
12 |
25 |
2 |
x |
8 |
5 |
一. 填空題(每題4分,共48分)
1. {0}; 2. 四; 3. 12; 4. 0; 5. 4; 6. 理、文7; 7. 理
二.選擇題(每題4分,共16分)
13.D; 14.B; 15.C; 16.理B、文B.
三. 解答題. 17.(本題滿分12分)解:由已知得 (3分)
∴, ∴ (6分)
∴ 又,即,∴ (9分)
∴的面積S=. (12分)
18.(本題滿分12分)解:∵,∴ (5分)
∵,欲使是純虛數(shù),
而=
(7分)
∴, 即
(11分)
∴當(dāng)時(shí),是純虛數(shù).
(12分)
19.(本題滿分14分,第1小題滿分9分,第2小題滿分5分)
解:(1)依題意設(shè),則, (2分)
(4分) 而,
∴,即, (6分) ∴ (7分)
從而. (9分)
(2)平面,
∴直線到平面的距離即點(diǎn)到平面的距離 (2分)
也就是的斜邊上的高,為. (5分)
20.(本題滿分14分,第1小題滿分8分,第2小題滿分6分)
解:(1)不正確.
(2分)
沒有考慮到還可以小于.
(3分)
正確解答如下:
令,則,
當(dāng)時(shí),,即
(5分)
當(dāng)時(shí),,即
(7分)
∴或,即既無最大值,也無最小值.
(8分)
(2)(理)對(duì)于函數(shù),令
①當(dāng)時(shí),有最小值,,
(9分)
當(dāng)時(shí),,即,當(dāng)時(shí),即
∴或,即既無最大值,也無最小值.
(10分)
②當(dāng)時(shí),有最小值,,
此時(shí),,∴,即,既無最大值,也無最小值 .(11分)
③當(dāng)時(shí),有最小值,,即 (12分)
∴,即,
∴當(dāng)時(shí),有最大值,沒有最小值.
(13分)
∴當(dāng)時(shí),既無最大值,也無最小值。
當(dāng)時(shí),有最大值,此時(shí);沒有最小值.
(14分)
(文)∵, ∴ (12分)
∴函數(shù)的最大值為(當(dāng)時(shí))而無最小值. (14分)
21.(本滿分16分,第1、2小題滿分各4分,第3小題滿分8分)
解:(1) (4分)
(2)由解得 (7分)
所以第個(gè)月更換刀具. (8分)
(3)第個(gè)月產(chǎn)生的利潤是: (9分)
個(gè)月的總利潤:(11分)
個(gè)月的平均利潤: (13分)
由 且
在第7個(gè)月更換刀具,可使這7個(gè)月的平均利潤最大(13.21萬元) (14分)此時(shí)刀具厚度為(mm) (16分)
22.(本題滿分18分,第1、2小題滿分各4分,第3小題滿分10分)
解:(1) (4分)
(2)各點(diǎn)的橫坐標(biāo)為: (8分)
(3)過作斜率為的直線交拋物線于另一點(diǎn), (9分)
則一般性的結(jié)論可以是:
點(diǎn) 的相鄰橫坐標(biāo)之和構(gòu)成以為首項(xiàng)和公比的等比數(shù)列(或:點(diǎn)無限趨向于某一定點(diǎn),且其橫(縱)坐標(biāo)之差成等比數(shù)列;或:無限趨向于某一定點(diǎn),且其橫(縱)坐標(biāo)之差成等比數(shù)列,等)(12分)
證明:設(shè)過點(diǎn)作斜率為的直線交拋物線于點(diǎn)由
得或;
點(diǎn)的橫坐標(biāo)為,則 (14分)
于是兩式相減得: (16分)
=
故點(diǎn)無限逼近于點(diǎn)
同理無限逼近于點(diǎn) (18分)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com