則.(用等比數(shù)列前n項和公式的推導方法).相減得 查看更多

 

題目列表(包括答案和解析)

設數(shù)列{an}的前n項和為Sn,若對于任意的n∈N*,都有Sn=2an-3n.
(1)求數(shù)列{an}的首項a1與遞推關系式:an+1=f(an);
(2)先閱讀下面定理:“若數(shù)列{an}有遞推關系an+1=Aan+B,其中A、B為常數(shù),且A≠1,B≠0,則數(shù)列{an-
B1-A
}
是以A為公比的等比數(shù)列.”請你在第(1)題的基礎上應用本定理,求數(shù)列{an}的通項公式;
(3)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

設數(shù)列{an}的前n項和為Sn,若對于任意的n∈N*,都有Sn=2an-3n,

(1)求數(shù)列{an}的首項與遞推關系式an+1=f(an);

(2)先閱讀下面定理,若數(shù)列{an}有遞推關系an+1=Aan+B,其中A、B為常數(shù),且A≠1,B≠0,則數(shù)列{an-}是以A為公比的等比數(shù)列,請你在第(1)題的基礎上應用本定理,求數(shù)列{an}的通項公式;

(3)求數(shù)列{an}的前n項和Sn.

查看答案和解析>>

設數(shù)列{an}的前n項和為Sn,若對于任意的n∈N*,都有Sn=2an-3n.
(1)求數(shù)列{an}的首項a1與遞推關系式:an+1=f(an);
(2)先閱讀下面定理:“若數(shù)列{an}有遞推關系an+1=Aan+B,其中A、B為常數(shù),且A≠1,B≠0,則數(shù)列數(shù)學公式是以A為公比的等比數(shù)列.”請你在第(1)題的基礎上應用本定理,求數(shù)列{an}的通項公式;
(3)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

設數(shù)列{an}的前n項和為Sn,若對于任意的n∈N*,都有Sn=2an-3n.
(1)求數(shù)列{an}的首項a1與遞推關系式:an+1=f(an);
(2)先閱讀下面定理:“若數(shù)列{an}有遞推關系an+1=Aan+B,其中A、B為常數(shù),且A≠1,B≠0,則數(shù)列{an-
B
1-A
}
是以A為公比的等比數(shù)列.”請你在第(1)題的基礎上應用本定理,求數(shù)列{an}的通項公式;
(3)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

設數(shù)列{an}的前n項和為Sn,若對于任意的n∈N*,都有Sn=2an-3n.
(1)求數(shù)列{an}的首項a1與遞推關系式:an+1=f(an);
(2)先閱讀下面定理:“若數(shù)列{an}有遞推關系an+1=Aan+B,其中A、B為常數(shù),且A≠1,B≠0,則數(shù)列是以A為公比的等比數(shù)列.”請你在第(1)題的基礎上應用本定理,求數(shù)列{an}的通項公式;
(3)求數(shù)列{an}的前n項和Sn

查看答案和解析>>


同步練習冊答案