(2)若函數(shù)在區(qū)間上單調(diào)遞增.求m的取值范圍. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)數(shù)學(xué)公式的單調(diào)遞增區(qū)間為[m,n]
(1)求證f(m)f(n)=-4;
(2)當(dāng)n-m取最小值時(shí),點(diǎn)p(x1,y1),Q(x2,y2)(a<x1<x2<n),是函數(shù)f(x)圖象上的兩點(diǎn),若存在x0使得f′(x0)=數(shù)學(xué)公式,x求證x1<|x0|<x2

查看答案和解析>>

已知函數(shù)的單調(diào)遞增區(qū)間為[m,n]
(1)求證f(m)f(n)=-4;
(2)當(dāng)n-m取最小值時(shí),點(diǎn)p(x1,y1),Q(x2,y2)(a<x1<x2<n),是函數(shù)f(x)圖象上的兩點(diǎn),若存在x使得f′(x)=,x求證x1<|x|<x2

查看答案和解析>>

已知函數(shù)的單調(diào)遞增區(qū)間為[m,n]
(1)求證f(m)f(n)=-4;
(2)當(dāng)n-m取最小值時(shí),點(diǎn)p(x1,y1),Q(x2,y2)(a<x1<x2<n),是函數(shù)f(x)圖象上的兩點(diǎn),若存在x使得f′(x)=,x求證x1<|x|<x2

查看答案和解析>>

已知函數(shù)在區(qū)間,上單調(diào)遞增,在區(qū)間[-2,2]上單調(diào)遞減.

(1)求的解析式;

(2)設(shè),若對(duì)任意的1、x­2不等式恒成立,求實(shí)數(shù)m的最小值。

 

查看答案和解析>>

已知函數(shù)在區(qū)間,上單調(diào)遞增,在區(qū)間[-2,2]上單調(diào)遞減.
(1)求的解析式;
(2)設(shè),若對(duì)任意的1、x­2不等式恒成立,求實(shí)數(shù)m的最小值。

查看答案和解析>>

一、選擇題:

1.B   2.C  3.D   4.C   5. B   6.A   7. C   8.A  9.A  10. B 11.B  12. A

二、填空題:

13.       14.      15.       16.     

17. 360     18.      19.       20.1320    21.2/5   22.5    23. 9/8      24. 正四面體內(nèi)任意一點(diǎn)到各個(gè)面的距離之和等于此正四面體的高   25.5/7   26.   

三、解答題:

27解:(I)

(II)由   得

          

x的取值范圍是

28解:(1)甲隊(duì)以二比一獲勝,即前兩場(chǎng)中甲勝1場(chǎng),第三場(chǎng)甲獲勝,其概率為

(2)乙隊(duì)以2:0獲勝的概率為;

乙隊(duì)以2:1獲勝的概率為

∴乙隊(duì)獲勝的概率為P2=P'2+P''2=0.16+0.192=0.352.

29解:(1)

<style id="h2txg"></style>
<sup id="h2txg"><samp id="h2txg"><pre id="h2txg"></pre></samp></sup>

    <style id="h2txg"><strong id="h2txg"></strong></style>

    <li id="h2txg"></li>
  • <form id="h2txg"><xmp id="h2txg"><s id="h2txg"></s></xmp></form>

    由①②解得a=1,b=3

    (2)

    30解:(1)設(shè)正三棱柱的側(cè)棱長(zhǎng)為.取中點(diǎn),連

    是正三角形,

    又底面側(cè)面,且交線為

    側(cè)面

    ,則直線與側(cè)面所成的角為

    中,,解得

    此正三棱柱的側(cè)棱長(zhǎng)為.                 

     注:也可用向量法求側(cè)棱長(zhǎng).

    (2)解法1:過,連

    側(cè)面為二面角的平面角.

    中,,

    ,

    中,

    故二面角的大小為.      

    (3)解法1:由(2)可知,平面,平面平面,且交線為,

    ,則平面

    中,

    中點(diǎn),點(diǎn)到平面的距離為. 

    解法2:(思路)取中點(diǎn),連,

    ,易得平面平面,且交線為

    過點(diǎn),則的長(zhǎng)為點(diǎn)到平面的距離.

    解法3:(思路)等體積變換:由可求.

    解法4:(向量法,見后)

    題(Ⅱ)、(Ⅲ)的向量解法:

    (2)解法2:如圖,建立空間直角坐標(biāo)系

    設(shè)為平面的法向量.

    .取

    又平面的一個(gè)法向量

    結(jié)合圖形可知,二面角的大小為.     

    (3)解法4:由(2)解法2,

    點(diǎn)到平面的距離

    31解:(1)由已知,,),

    ,),且

    ∴數(shù)列是以為首項(xiàng),公差為1的等差數(shù)列.

    (2)∵,∴,要使恒成立,

    恒成立,

    恒成立,

    恒成立.

    (?)當(dāng)為奇數(shù)時(shí),即恒成立,

    當(dāng)且僅當(dāng)時(shí),有最小值為1,

    (?)當(dāng)為偶數(shù)時(shí),即恒成立,

    當(dāng)且僅當(dāng)時(shí),有最大值,

    ,又為非零整數(shù),則

    綜上所述,存在,使得對(duì)任意,都有

    32解:(1)∵,∴,

    又∵,∴,

    ,∴橢圓的標(biāo)準(zhǔn)方程為.    

    (2)顯然的斜率不為0,當(dāng)的斜率不為0時(shí),設(shè)方程為,

    代入橢圓方程整理得:

    ,

    即: ,

    當(dāng)且僅當(dāng),即(此時(shí)適合于的條件)取到等號(hào).

    ∴三角形△ABF面積的最大值是.                      

     

     


    同步練習(xí)冊(cè)答案