(2)求直線到平面的距離, 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標(biāo)系xOy中,已知對于任意實(shí)數(shù)k,直線(
3
k+1)x+(k-
3
)y-(3k+
3
)=0
恒過定點(diǎn)F.設(shè)橢圓C的中心在原點(diǎn),一個焦點(diǎn)為F,且橢圓C上的點(diǎn)到F的最大距離為2+
3

(1)求橢圓C的方程;
(2)設(shè)(m,n)是橢圓C上的任意一點(diǎn),圓O:x2+y2=r2(r>0)與橢圓C有4個相異公共點(diǎn),試分別判斷圓O與直線l1:mx+ny=1和l2:mx+ny=4的位置關(guān)系.

查看答案和解析>>

精英家教網(wǎng)在平面直角坐標(biāo)系中,橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),圓O:x2+y2=a2,且過點(diǎn)A(
a2
c
,0)所作圓的兩條切線互相垂直.
(Ⅰ)求橢圓離心率;
(Ⅱ)若直線y=2
3
與圓交于D、E;與橢圓交于M、N,且DE=2MN,求橢圓的方程;
(Ⅲ)設(shè)點(diǎn)T(0,3)在橢圓內(nèi)部,若橢圓C上的點(diǎn)到點(diǎn)P的最遠(yuǎn)距離不大于5
2
,求橢圓C的短軸長的取值范圍.

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,-1),B點(diǎn)在直線y=-3上,M點(diǎn)滿足
MB
OA
,
MA
AB
=
MB
BA
,M點(diǎn)的軌跡為曲線C.
(Ⅰ)求C的方程;
(Ⅱ)P為C上的動點(diǎn),l為C在P點(diǎn)處的切線,求O點(diǎn)到l距離的最小值.

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為
x=2cos
y=2sin?-2
(?為參數(shù)),在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,C2的極坐標(biāo)方程為ρcos(θ-
π
4
)=
2
,(余弦展開為+號,改題還是答案?)
(1)求曲線C1的極坐標(biāo)方程及C2的直角坐標(biāo)方程;
(2)點(diǎn)P為C1上任意一點(diǎn),求P到C2距離的取值范圍.

查看答案和解析>>

在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知點(diǎn),,

若點(diǎn)C滿足,點(diǎn)C的軌跡與拋物線交于A、B兩點(diǎn).

(I)求證:;

(II)在軸正半軸上是否存在一定點(diǎn),使得過點(diǎn)P的任意一條拋物線的弦的長度是原點(diǎn)到該弦中點(diǎn)距離的2倍,若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

一、選擇題

BCDC  BBCB  AA

二、填空題

11.(-1,0);12.4;13.-4;14.-1;15.;16.x2(注:本題答案不唯一,只要滿足條件 a¹0,2|a|+|b|≤1即可)

三、解答題

17.解:由條件知20cos2A=3?,即10cos2A?sinA=3cosA,又cot¹tan,∴cosA¹0,

解得sin2A=.                     ?????????????????????????????????????????????????????????4分

(1)    若∠C=60º,則cos2B=cos2(120º-A)=cos(240º-2A)=-cos(60º-2A)=-(cos60ºcos2A+sin60ºsin2A)

=-.                         ??????????????????????????????????????????????????????????????7分

(2)    若a<b<c,則A<60º.又由sin2A=<,知0<2A<60º或2A>120º.∴A<30º.???????????????11分

∵(sinA-cosA)2=1-sin2A=,∴sinA-cosA=-.???????????????????????????????????????????????????????12分

18.解:(1)設(shè)P(x,y),則=(x+1,y),=(x-1,y),

   ∵,∴(x+1)2=(x-1)2+y2,????????????????????????????????????????????????????????????????????????2分

y2=4x.     

動點(diǎn)P的軌跡E的方程是y2=4x.      ???????????????????????????????????????????????????????????????????????4分

  (2)設(shè)直線l的方程為x=k(y-1),代入軌跡E的方程y2=4x,整理得:y2-4ky+4k=0.  ?????????6分

由題意知,(4k)2-4´4k>0且4k>0,解得k>1.    ???????????????????????????????????????????????????????????8分

由根與系數(shù)的關(guān)系可得MN的中點(diǎn)坐標(biāo)為(k(2k-1),2k),

∴線段MN垂直平分線方程為:y-2k=-k[x-k(2k-1)],        ?????????????????????????????????10分

y=0,得D點(diǎn)的橫坐標(biāo)x0=2k2-k+2,

k>1,∴x0>3,即為所求.      ??????????????????????????????????????????????????????????????????????????????????14分

19.(1)證明:連結(jié)C1E,則C1E^A1B1,

又∵A1B1^C1C,∴A1B1^平面EDC1,∴A11^DE,

而A1B1//AB,∴AB^DE.   ????????????????????????????????????????????????????????????????????????????????????????????4分

(2)取AB中點(diǎn)為F,連結(jié)EF,DF,則EF^AB,∴AB^DF.

   過E作直線EH^DF于H點(diǎn),則EH^平面DAB,∴EH就是直線A1B1到平面DAB的距離.

   在矩形C1EFC中,∵AA1=AB=2,∴EF=2,C1E=,DF=2,

∴在△DEF中,EH=,

故直線A1B1到平面DAB的距離為.         ???????????????????????????????????????????????????????????9分

(3)過A作AM^BC于M點(diǎn),則AM^平面CDB,

   過M作MN^BD于N點(diǎn),連結(jié)AN,則AN^BD,∴∠ANM即為所求二面角的平面角,

   在Rt△DCB中,BC=2,DC=1,M為BC中點(diǎn),∴MN=,

   在Rt△AMN中,tan∠ANM=,

    故二面角A-BD-C的大小為arctan.      ???????????????????????????????????????????????????????????????14分

20.解:(1)設(shè)從明年開始經(jīng)過第n年,方案乙的累計(jì)總收益為正數(shù)。

在方案乙中,前4年的總收入為

    =2600<6000,                       ?????????????????????????????????????????1分

n必定不小于5,則由

    2600+320´1.54(n-4)>6000,                       ?????????????????????????????????????4分

解得 n>6,故n的最小值為7,

答: 從明年開始至少經(jīng)過7年,方案乙能收回投資。  ????????????????????????????????????????????6分

(2)設(shè)從明年開始經(jīng)過n年方案甲與方案乙的累計(jì)總收益分別為y1,y2萬元,則

y1=760n-[50n+n(n-1)?20]=-10n2+720n,    ???????????????????????????????????????????????????????????????8分

當(dāng)n≤4時(shí),則y1>0,y2<0,可得y1>y2.          ???????????????????????????????????????????????????????????9分

當(dāng)n³5時(shí),y2=2600+320´1.54(n-4)-6000=1620n-9880,

y1<y2,可得1620n-9880>-10n2+720n,

即   n(n+90)>998,   ??????????????????????????????????????????????????????????????????????????????????????????????????12分

由10(10+90)>998,9(9+90)<998,可得n的最小值為10.

答:從明年開始至少經(jīng)過10年,方案乙的累計(jì)總收益超過方案甲。 ??????????????????14分

21.解: (1)設(shè)0≤x1<x2≤1,則必存在實(shí)數(shù)tÎ(0,1),使得x2=x1+t,

   由條件③得,f(x2)=f(x1+tf(x1)+f(t)-2,

   ∴f(x2)-f(x1f(t)-2,

   由條件②得, f(x2)-f(x1)³0,

   故當(dāng)0≤x≤1時(shí),有f(0)≤f(x)≤f(1).                 ????????????????????????????????????????????????????????????3分

   又在條件③中,令x1=0,x2=1,得f(1)³f(1)+f(0)-2,即f(0)≤2,∴f(0)=2,   ??????????????????????????????5分

   故函數(shù)f(x)的最大值為3,最小值為2.                        ???????????????????????????????????6分

(2)解:在條件③中,令x1=x2=,得f()³2f()-2,即f()-2≤[f()-2],  ????????????????????????????9分

   故當(dāng)nÎN*時(shí),有f()-2≤[f()-2]≤[f()-2]≤???≤[f()-2]=,

   即f()≤+2.

   又f()=f(1)=3≤2+,

   所以對一切nÎN,都有f()≤+2.                    ???????????????????????????????????????????????12分

(3)對一切xÎ(0,1,都有.

  對任意滿足xÎ(0,1,總存在n(nÎN),使得

        <x≤,                    ????????????????????????????????????????????????????????????????????????14分

  根據(jù)(1)(2)結(jié)論,可知:

f(x)≤f()≤+2,

且2x+2>2´+2=+2,

故有.

綜上所述,對任意xÎ(0,1,恒成立.   ?????????????????????????????????????????????16分

 


同步練習(xí)冊答案