19 查看更多

 

題目列表(包括答案和解析)

( 本題滿分12分) 設(shè),,

(1)當(dāng)時(shí),若

。

(2)當(dāng)時(shí),若展開式中的系數(shù)是20,求的值。

(3)展開式中的系數(shù)是19,當(dāng)變化時(shí),求系數(shù)的最小值。

查看答案和解析>>

(本題滿分12分)

某學(xué)校的課題組為了研究學(xué)生的數(shù)學(xué)成績與物理成績之間的關(guān)系,隨機(jī)抽取高二年級(jí)20名學(xué)生某次考試成績(滿分100分)如下表所示:

序號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

數(shù)學(xué)

95

75

80

94

92

65

67

84

98

71

67

93

64

78

77

90

57

83

72

83

物理

90

63

72

87

91

71

58

82

93

81

77

82

48

85

69

91

61

84

78

86

若單科成績?cè)?5分以上(含85分),則該科成績?yōu)閮?yōu)秀.

(1)根據(jù)上表完成下面的列聯(lián)表(單位:人)

數(shù)學(xué)成績優(yōu)秀

數(shù)學(xué)成績不優(yōu)秀

總計(jì)

物理成績優(yōu)秀

物理成績不優(yōu)秀

總計(jì)

20

(2)根據(jù)(1)中表格的數(shù)據(jù)計(jì)算,是否有99%的把握,認(rèn)為學(xué)生的數(shù)學(xué)成績與物理成績之間有關(guān)系?

(3)若從這20個(gè)人中抽出1人來了解有關(guān)情況,求抽到的學(xué)生數(shù)學(xué)成績與物理成績至少有一門不優(yōu)秀的概率.

參考公式:

P(K2k)

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

(本題滿分12分)
對(duì)甲、乙兩種商品的重量的誤差進(jìn)行抽查,測(cè)得數(shù)據(jù)如下(單位:):
甲:13  15  14  14  9  14  21  9   10  11
乙:10  14  9  12  15  14  11  19  22  16
(1)畫出樣本數(shù)據(jù)的莖葉圖,并指出甲,乙兩種商品重量誤差的中位數(shù);
(2)計(jì)算甲種商品重量誤差的樣本方差;
(3)現(xiàn)從重量誤差不低于15的乙種商品中隨機(jī)抽取兩件,求重量誤差為19的商品被抽
中的概率。

查看答案和解析>>

(本題滿分12分)

為了解某年段1000名學(xué)生的百米成績情況,隨機(jī)抽取了若干學(xué)生的百米成績,成績?nèi)拷橛?3秒與18秒之間,將成績按如下方式分成五組:第一組[13,14);第二組[14,15);……;第五組[17,18].按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右的前3個(gè)組的頻率之比為3∶8∶19,且第二組的頻數(shù)為8.

(1)將頻率當(dāng)作概率,請(qǐng)估計(jì)該年段學(xué)生中百米成績?cè)赱16,17)內(nèi)的人數(shù);

(2)求調(diào)查中隨機(jī)抽取了多少個(gè)學(xué)生的百米成績;

(3)若從第一、五組中隨機(jī)取出兩個(gè)成績,求這兩個(gè)成績的差的絕對(duì)值大于1秒的概率.

 

查看答案和解析>>

(本題滿分12分)某工廠有甲、乙兩個(gè)生產(chǎn)小組,每個(gè)小組各有四名工人,某天該廠每位工人的生產(chǎn)情況如下表.

 

  員工號(hào)

    1

    2

    3

    4

    甲組

 

   件數(shù)

     9

    11

    1l

 

    9

 

 

  員工號(hào)

    1

    2

    3

    4

    乙組

 

   件數(shù)

   b 9

    8

    10

    9

(1)用莖葉圖表示兩組的生產(chǎn)情況;

(2)求乙組員工生產(chǎn)件數(shù)的平均數(shù)和方差;

(3)分別從甲、乙兩組中隨機(jī)選取一名員工的生產(chǎn)件數(shù),求這兩名員工的生產(chǎn)總件數(shù)為19的概率.

(注:方差,其中為x1,x2,…,xn的平均數(shù))

 

 

查看答案和解析>>

一、選擇題:(本大題共10小題,每小題5分,共50分)

  1 B  2 A  3  文C(理C) 4  D  5  文A(理B) 6  文B(理C)   7  文C(理C)   8  文C(理A)   9  文A (理D) 10  文D(理A)

二、填空題:(本大題共6小題,每小題4分,共24分。

11  (文)“若,則” ,(理)

12  (文) ,(理), 

13  (文),(理)-2

14  -2      15            16  ②④

三、解答題:(本大題共6個(gè)解答題,滿分76分,)

17  (文)解:以AN所在直線為x軸,AN的中垂

線為y軸建立平面直角坐標(biāo)系如圖所示,

則A(-4,0),N(4,0),設(shè)P(x,y)  

由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:

                             

代入坐標(biāo)得:        

整理得:                        

                            

所以動(dòng)點(diǎn)P的軌跡是以點(diǎn)

(理)解:(I)當(dāng)a=1時(shí)  

                            

 或         

                               

(II)原不等式              

設(shè) 

當(dāng)且僅當(dāng)

時(shí)                    

依題有:10a<10  ∴為所求  

 18  (文)解:

  

   解得        

                   

                            

 

若由方程組解得,可參考給分

(理)解:(Ⅰ)設(shè)    (a≠0),則

           ……     ①

          ……    ②

又∵有兩等根

      ∴……  ③

由①②③得                         

又∵

  ∴a<0, 故

                        

    (Ⅱ)

                        

       ∵g(x)無極值

       ∴方程

      

      得                      

19  (文)解:(I)當(dāng)a=1時(shí)  

                            

 或         

                              

(II)原不等式              

設(shè) 

當(dāng)且僅當(dāng)

時(shí)                   

依題有:10a<10  ∴為所求                       

 

(理)解:以AN所在直線為x軸,AN的中垂

線為y軸建立平面直角坐標(biāo)系如圖所示,

則A(-4,0),N(4,0),設(shè)P(x,y)  

由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:

                              

代入坐標(biāo)得:        

整理得:                       

                            

所以動(dòng)點(diǎn)P的軌跡是以點(diǎn)

20  (文)解:(Ⅰ)設(shè)    (a≠0),則

           ……     ①

          ……    ②

又∵有兩等根

      ∴……  ③

由①②③得                         

又∵

  ∴a<0, 故

                       

    (Ⅱ)

                        

       ∵g(x)無極值

       ∴方程

      

      得                             

(理)解:(I)設(shè)       (1)

     (2)

由(1),(2)解得              

(II)由向量與向量的夾角為

及A+B+C=知A+C=

            

     

由0<A<,得

的取值范圍是                      

 

21   解:(I)由已知得Sn=2an-3n,

Sn+1=2an+1-3(n+1),兩式相減并整理得:an+1=2an+3            

所以3+ an+1=2(3+an),又a1=S1=2a1-3,a1=3可知3+ a1=6,進(jìn)而可知an+3

所以,故數(shù)列{3+an}是首相為6,公比為2的等比數(shù)列,

所以3+an=6,即an=3()                           

同步練習(xí)冊(cè)答案