題目列表(包括答案和解析)
平面直角坐標系內(nèi)的向量都可以用一有序?qū)崝?shù)對唯一表示,這使我們想到可以用向量作為解析幾何的研究工具.如圖,設直線
l的傾斜角為α(α≠90°).在l上任取兩個不同的點,,不妨設向量的方向是向上的,那么向量的坐標是().過原點作向量,則點P的坐標是(),而且直線OP的傾斜角也是α.根據(jù)正切函數(shù)的定義得 ,這就是《數(shù)學
2》中已經(jīng)得到的斜率公式.上述推導過程比《數(shù)學2》中的推導簡捷.你能用向量作為工具討論一下直線的有關問題嗎?例如:(1)
過點,平行于向量的直線方程;(2)
向量(A,B)與直線的關系;(3)
設直線和的方程分別是 , ,那么,
∥,的條件各是什么?如果它們相交,如何得到它們的夾角公式?(4)
點到直線的距離公式如何推導?有三個命題:①垂直于同一個平面的兩條直線平行;②過平面α的一條斜線l有且僅有一個平面與α垂直;③異面直線a、b不垂直,那么過a的任一個平面與b都不垂直。其中正確命題的個數(shù)為( )
A.0 B.1 C.2 D.3
在平面直角坐標系中,已知分別是橢圓的左、右焦點,橢圓與拋物線有一個公共的焦點,且過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設點是橢圓在第一象限上的任一點,連接,過點作斜率為的直線,使得與橢圓有且只有一個公共點,設直線的斜率分別為,,試證明為定值,并求出這個定值;
(III)在第(Ⅱ)問的條件下,作,設交于點,
證明:當點在橢圓上移動時,點在某定直線上.
一、填空題(本大題滿分48分,每小題4分,共12小題)
1.; 2.; 3.; 4.; 5.;
6.; 7.; 8.; 9.; 10.;
11.; 12..
二、選擇題(本大題滿分16分,每小題4分,共4小題)
13.C; 14.A; 15.B; 16.C;
三、解答題(本大題滿分86分,本大題共有6題)
17.(1);
(2);
18.1號至4號正四棱柱形容器是體積依次為。
∵ ,,
∴ 存在必勝方案,即選擇3號和4號容器。
19.(1)∵ 由正弦定理,,∴ ,。
∵ , ∴ ,即! 。
(2)∵ ,
∴ 。
20.(1)設放水分鐘內(nèi)水箱中的水量為升
依題意得;
分鐘時,水箱的水量升, 放水后分鐘水箱內(nèi)水量接近最少;
(2)該淋浴器一次有個人連續(xù)洗浴, 于是,,
所以,一次可最多連續(xù)供7人洗浴。
21.(1)由及,∴時成等比數(shù)列。
(2)因,由(1)知,,故。
(3)設存在,使得成等差數(shù)列,則,
即因,所以,
∴不存在中的連續(xù)三項使得它們可以構成等差數(shù)列。
22.(1)解:設為函數(shù)圖像的一個對稱點,則對于恒成立.即對于恒成立,
由,故圖像的一個對稱點為.
(2)解:假設是函數(shù)(的圖像的一個對稱點,
則(對于恒成立,
即對于恒成立,因為,所以不
恒成立,
即函數(shù)(的圖像無對稱點.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com