題目列表(包括答案和解析)
A.56種 B.49種 C.42種 D.14種
某校需要在5名男生和5名女生中選出4人參加一項(xiàng)文化交流活動(dòng),由于工作需要,男生甲與男生乙至少有一人參加活動(dòng),女生丙必須參加活動(dòng),則不同的選人方式有
A.56種 B.49種 C.42種 D.14種
某校需要在5名男生和5名女生中選出4人參加一項(xiàng)文化交流活動(dòng),由于工作需要,男生甲與男生乙至少有一人參加活動(dòng),女生丙必須參加活動(dòng),則不同的選人方式有
A.56種 B.49種 C.42種 D.14種
A.56種 B.49種 C.42種 D.14種
一、1.B 2.B 3.D 4.B 5.D 6.A 7.B 8.C 9.B 10.B 11.B 12.D
二、13. 14.32 15.162 16.3
三、17.解:(1)
(2)
,
18.解:(1)設(shè)5次實(shí)驗(yàn)中只成功一次為事件A,一次都不成功為事件B,
則P(5次實(shí)驗(yàn)至少2次成功)=1-P(A)-P(B)=1-
(法2:所求概率為)
(2)ξ的可能取值為2、3、4、5
又
19.解法1:(1)取CD的中點(diǎn)E,連結(jié)PE、EM、EA
∵△PCD為正三角形 ∴PE⊥CD,PE=PDsin∠PDE=2sin60°=
∵平面PCD⊥平面ABCD ∴PE⊥平面ABCD
∵四邊形ABCD是矩形 ∴△ADE、△ECM、△ABM均為直角三角形
由勾股定理可求得EM=,AM=,AE=3 ∴EM2+AM2=AE2
∴∠AME=90° ∴AM⊥PM
(2)由(1)可知EM⊥AM,PM⊥AM ∴∠PME是二面角P―AM―D的平面角
∴tan∠PME= ∴∠PMA=45° ∴二面角P―AM―D為45°
(3)設(shè)D點(diǎn)到平面PAM的距離為d,連結(jié)DM,則
在Rt△PEM中,由勾股定理可求得PM=,,
解法2:(1)以D點(diǎn)為原點(diǎn),
分別以直線DA、DC
為x軸、y軸,建立
如圖所示的空間直角
坐標(biāo)系D―xyz,
依題意,可得D(0,0,0),P(0,1,),C(0,2,0),A(2,0,0),
M(,2,0),
即,∴AM⊥PM.
(2)設(shè)平面PAM,則
取y=1,得 顯然平面ABCD
.
結(jié)合圖形可知,二面角P―AM―D為45°;
(3)設(shè)點(diǎn)D到平面PAM的距離為d,由(2)可知)與平面PAM垂直,
則
即點(diǎn)D到平面PAM的距離為
20.解:(1)
①當(dāng)時(shí) 由
解得:定義域?yàn)椋?,+∞)
∴函數(shù)的單調(diào)遞增區(qū)間為(
由可知的單調(diào)遞增區(qū)間為
②當(dāng)時(shí) 同理可得:函數(shù)的單調(diào)遞增區(qū)間為
函數(shù)的單調(diào)遞減區(qū)間為
(2)當(dāng)時(shí),
令
當(dāng)上單調(diào)遞增
當(dāng)上單調(diào)遞減
又在[1,3]上連續(xù) 為函數(shù)的極大值.
又
是函數(shù)在[1,3]上的最小值,
為在[1,3]的最大值.
21.解:(1)在直線
∵P1為直線l與y軸的交點(diǎn),∴P1(0,1) ,
又?jǐn)?shù)列的公差為1
(2)
(3)
是以2為公比,4為首項(xiàng)的等比數(shù)列,
22.解:(1)直線l過點(diǎn)(3,)且方向向量為)
∴l方程為 化簡(jiǎn)為:
∵直線和橢圓交于兩點(diǎn)和x軸交于M(1,0)
又
即
(2) ∴橢圓C方程為
由
∴橢圓C方程為:
(3)將中得 ①
由韋達(dá)定理知:
由②2/③知:………④
對(duì)方程①求判別式,且由 即
化簡(jiǎn)為:………………⑤
由④式代入⑤式可知:,求得,
又橢圓的焦點(diǎn)在x軸上,則,
由④知:,結(jié)合,求得
因此所求橢圓長(zhǎng)軸長(zhǎng)2a范圍為(2,).
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com