題目列表(包括答案和解析)
已知函數(shù)f(x)=-x2+ax+b2-b+1(a∈R,b∈R),對任意實數(shù)x都有f(1-x)=f(1+x)成立,若當(dāng)x∈[-1,1]時,f(x)>0恒成立,則b的取值范圍是
( )
(A)-1<b<0 (B)b>2
(C)b<-1或b>2 (D)不能確定
已知函數(shù)f(x)=ax3-bx2 +(2-b)x+1,在x=x2處取得極大值,在x=x2處取得極小值,且0<x1<1<x2<2。
(1)證明:a>0;www.zxxk.com
(2)若z=a+2b,求z的取值范圍。www.zxxk.com
已知函數(shù)f(x)=ax3-bx2 +(2-b)x+1,在x=x2處取得極大值,在x=x2處取得極小值,且0<x1<1<x2<2。
(1)證明:a>0;
(2)若z=a+2b,求z的取值范圍。
已知函數(shù)f(x)=ax+lnx(a∈R).
(1)若a=2,求曲線y=f(x)在x=1處切線的斜率;
(2)求f(x)的單調(diào)區(qū)間;
(3)設(shè)g(x)=x2-2x+2,若對任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范圍.
一.選擇
1. 選B 滿足f[f(x)]=x有2個 ①1→1,2→2 ②1→2,2→1
2. 選C 只需注意
3. 選C 當(dāng)時
4. 選D 分組(1),(2,2),(3,3,3),(4,4,4,4)……
前13組共用去1+2+……+13=個數(shù),而第14組有14個數(shù),
故第100項是在第14組中.
5. 選D 由于0<a<b 有f(a)=f(b) 故0<a<, b>
即 f(a)=2-a2 , f(b)=b2-2
由2-a2= b2-2得到a2+b2=4且a≠b ∴0<ab<2
6.選B 由已知 ∴ ∴.
7.選D 由.
8.選C 設(shè)正方體的邊長為a,當(dāng)截面為菱形,即過相對棱(如AA1及CC1)時,
面積最小, 此時截面為邊長,兩對角線分別為和的菱形,
此時,當(dāng)截面過兩相對棱(如BC及A1D1)時截面積最大,
此時 ∴
|