題目列表(包括答案和解析)
1 |
2 |
3 |
2 |
a |
π |
4 |
AP |
BP |
5 |
4 |
將二次函數(shù)的圖象按,平移,使得平移后的圖象與函數(shù)的圖象有兩個(gè)不同的公共點(diǎn)、,且向量為原點(diǎn))與向量,共線,求平移后的圖象的解析式.
已知函數(shù)的圖象經(jīng)過點(diǎn),,且當(dāng)時(shí)的最大值是2-1.
(1)求的解析式;
(2)求出滿足條件的一個(gè),使得將的圖象按向量平移后可以得到一個(gè)奇函數(shù)的圖象.
a |
b |
c |
a |
b |
c |
d |
d |
3 |
π |
6 |
a |
π |
6 |
π |
6 |
π |
6 |
一、選擇題:(每小題5分,共60分)
ADBBC CDCDC BD
二、填空題:(每小題4分,共16分)
13. .
14、33
15、
16. ① ③ ⑤
三、解答題
17、【解】由題意,得
.……4分
(1)∵,,∴,
∴. ……8分
(2)由圖象變換得,平移后的函數(shù)為,而平移后的圖象關(guān)于原點(diǎn)對(duì)稱.
∴且,即且,
∵,∴,即.……12分
18、【解】解法一(I)證明:
連接A1B,設(shè)A1B∩AB1 = E,連接DE.
∵ABC―A1B
∴四邊形A1ABB1是正方形,
∴E是A1B的中點(diǎn),
又D是BC的中點(diǎn),
∴DE∥A
∵DE平面AB1D,A
∴A
(II)解:在面ABC內(nèi)作DF⊥AB于點(diǎn)F,在面A1ABB1內(nèi)作FG⊥AB1于點(diǎn)G,連接DG.
∵平面A1ABB1⊥平面ABC, ∴DF⊥平面A1ABB1,
∴FG是DG在平面A1ABB1上的射影, ∵FG⊥AB1, ∴DG⊥AB1
∴∠FGD是二面角B―AB1―D的平面角 …………………………6分
設(shè)A
在△ABE中,,
在Rt△DFG中,,
所以,二面角B―AB1―D的大小為 …………………………8分
(III)解:∵平面B1BCC1⊥平面ABC,且AD⊥BC,
∴AD⊥平面B1BCC1,又AD平面AB1D,∴平面B1BCC1⊥平面AB1D.
在平面B1BCC1內(nèi)作CH⊥B1D交B1D的延長線于點(diǎn)H,
則CH的長度就是點(diǎn)C到平面AB1D的距離. ……………………………10分
由△CDH∽△B1DB,得
|