題目列表(包括答案和解析)
5 | 12 |
1 | 7 |
袋中裝有大小和形狀相同的小球若干個黑球和白球,且黑球和白球的個數(shù)比為4:3,從中任取2個球都是白球的概率為現(xiàn)不放回從袋中摸取球,每次摸一球,直到取到白球時即終止,每個球在每一次被取出的機會是等可能的,用表示取球終止時所需要的取球次數(shù).
(1)求袋中原有白球、黑球的個數(shù);
(2)求隨機變量的分布列和數(shù)學(xué)期望.
袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為,現(xiàn)有甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到兩人中有一人取到白球時即終止,每個球在每一次被取出的機會是等可能的,用ξ表示取球終止所需要的取球次數(shù).
(1)求袋中原有白球的個數(shù);
(2)求隨機變量ξ的概率分布;
(3)求甲取到白球的概率.
一、選擇題:(每小題5分,共60分)
ADBBC CDCDC BD
二、填空題:(每小題4分,共16分)
13. .
14、33
15、
16. ① ③ ⑤
三、解答題
17、【解】由題意,得
.……4分
(1)∵,,∴,
∴. ……8分
(2)由圖象變換得,平移后的函數(shù)為,而平移后的圖象關(guān)于原點對稱.
∴且,即且,
∵,∴,即.……12分
18、【解】解法一(I)證明:
連接A1B,設(shè)A1B∩AB1 = E,連接DE.
∵ABC―A1B
∴四邊形A1ABB1是正方形,
∴E是A1B的中點,
又D是BC的中點,
∴DE∥A
∵DE平面AB1D,A
∴A
(II)解:在面ABC內(nèi)作DF⊥AB于點F,在面A1ABB1內(nèi)作FG⊥AB1于點G,連接DG.
∵平面A1ABB1⊥平面ABC, ∴DF⊥平面A1ABB1,
∴FG是DG在平面A1ABB1上的射影, ∵FG⊥AB1, ∴DG⊥AB1
∴∠FGD是二面角B―AB1―D的平面角 …………………………6分
設(shè)A
在△ABE中,,
在Rt△DFG中,,
所以,二面角B―AB1―D的大小為 …………………………8分
(III)解:∵平面B1BCC1⊥平面ABC,且AD⊥BC,
∴AD⊥平面B1BCC1,又AD平面AB1D,∴平面B1BCC1⊥平面AB1D.
在平面B1BCC1內(nèi)作CH⊥B1D交B1D的延長線于點H,
則CH的長度就是點C到平面AB1D的距離. ……………………………10分
由△CDH∽△B1DB,得
|