18.已知實(shí)數(shù)滿足不等式.解關(guān)于的不等式: 查看更多

 

題目列表(包括答案和解析)

已知實(shí)數(shù)a同時(shí)滿足下列兩個(gè)條件:
①函數(shù)f(x)=lg(x2-2ax+a2-a+1)的定義域?yàn)镽;
②對(duì)任意的實(shí)數(shù)x,不等式2x+|2x-3a|>1恒成立.
(1)求實(shí)數(shù)a的取值范圍;
(2)在①的條件下,求關(guān)于x的不等式loga(-2x2+3x)>0的解集.

查看答案和解析>>

已知實(shí)數(shù)x,y滿足:ex+y=x+1.(1)討論函數(shù)y=f(x)的單調(diào)性;(2)解關(guān)于x的不等式

查看答案和解析>>

已知實(shí)數(shù)a滿足不等式|a+1|<3,解關(guān)于x的不等式:[x-(a+1)](x+1)>0.

查看答案和解析>>

已知實(shí)數(shù)a同時(shí)滿足下列兩個(gè)條件:
①函數(shù)f(x)=lg(x2-2ax+a2-a+1)的定義域?yàn)镽;
②對(duì)任意的實(shí)數(shù)x,不等式2x+|2x-3a|>1恒成立.
(1)求實(shí)數(shù)a的取值范圍;
(2)在①的條件下,求關(guān)于x的不等式loga(-2x2+3x)>0的解集.

查看答案和解析>>

已知實(shí)數(shù)x,y滿足:ex+y=x+1.(1)討論函數(shù)y=f(x)的單調(diào)性;(2)解關(guān)于x的不等式數(shù)學(xué)公式

查看答案和解析>>

一、選擇題:(本大題12個(gè)小題,每小題5分,共60分)

CDAB,DABC,CBDA

二、填空題:(本大題4個(gè)小題,每小題4分,共16分)

13.0;    14.3;    15.3;     16.10

三、解答題:(本大題6個(gè)小題,共74分)

17.(12分)

解:(Ⅰ)由已知等式得:…………(2分)

 ………………(5分)

………………………………………………………………(6分)

(Ⅱ)……………………………………(8分)

……………………(11分)

………………………………………………………………(12分)

18.(12分)

解:由

………………………………(2分)

①當(dāng)時(shí),;……………………………(6分)

②當(dāng)時(shí),;…………………………………………(8分)

③當(dāng)時(shí),!11分)

綜上,當(dāng)時(shí),

當(dāng)時(shí),;

當(dāng)時(shí),!12分)

19.(12分)

解:(Ⅰ)

………………………………(7分)

(Ⅱ)

………………………(12分)

20.(12分)

解:設(shè)商場(chǎng)分配給超市部、服裝部、家電部的營(yíng)業(yè)額依次為萬元,萬元,萬元(均為正整數(shù)),由題意得:

………………………………(5分)

由(1),(2)得………………………………(7分)

………………………………(8分)

………………………………(9分)

………………(11分)

答:分配給超市部、服裝部、家電部的營(yíng)業(yè)額分別為12萬元,22萬元,21萬元,售貨員人數(shù)分別為48人,110人,42人;或者分配給三部門的營(yíng)業(yè)額依次為15萬元,20萬元,20萬元,售貨員人數(shù)分別為60人,100人,40人。……………………(12分)

21.(12分)

解:(Ⅰ)設(shè)拋物線頂點(diǎn)為,則拋物線的焦點(diǎn)為,由拋物線的定義可得:

……………………………(6分)

(Ⅱ)不存在。…………………………………………………………(7分)

設(shè)過點(diǎn),斜率為的直線方程為(斜率不存在時(shí),顯然不合題意),………………………………………………………………………………(8分)

…………………………(9分)

………………………………………………………(10分)

假設(shè)在軌跡上存在兩點(diǎn),令的斜率分別為,則

顯然不可能滿足

∴軌跡上不存在滿足的兩點(diǎn)。………………………………(12分)

22.(14分)

(Ⅰ)解:由,可以化為:

………………………………(1分)

從而…………………………………………………………(3分)

又由已知,得:

 ,  即 

∴數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,…………………………(4分)

……………………(8分)

(Ⅱ)證明:……(9分)

(12分)

(Ⅲ)解:由于,若恒成立

………………………………(14分)

     

 


同步練習(xí)冊(cè)答案