題目列表(包括答案和解析)
如圖6,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(Ⅰ)證明:BD⊥PC;
(Ⅱ)若AD=4,BC=2,直線PD與平面PAC所成的角為30°,求四棱錐P-ABCD的體積.
【解析】(Ⅰ)因為
又是平面PAC內(nèi)的兩條相較直線,所以BD平面PAC,
而平面PAC,所以.
(Ⅱ)設(shè)AC和BD相交于點(diǎn)O,連接PO,由(Ⅰ)知,BD平面PAC,
所以是直線PD和平面PAC所成的角,從而.
由BD平面PAC,平面PAC,知.在中,由,得PD=2OD.因為四邊形ABCD為等腰梯形,,所以均為等腰直角三角形,從而梯形ABCD的高為于是梯形ABCD面積
在等腰三角形AOD中,
所以
故四棱錐的體積為.
【點(diǎn)評】本題考查空間直線垂直關(guān)系的證明,考查空間角的應(yīng)用,及幾何體體積計算.第一問只要證明BD平面PAC即可,第二問由(Ⅰ)知,BD平面PAC,所以是直線PD和平面PAC所成的角,然后算出梯形的面積和棱錐的高,由算得體積
過拋物線的對稱軸上的定點(diǎn),作直線與拋物線相交于兩點(diǎn).
(I)試證明兩點(diǎn)的縱坐標(biāo)之積為定值;
(II)若點(diǎn)是定直線上的任一點(diǎn),試探索三條直線的斜率之間的關(guān)系,并給出證明.
【解析】本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.
(1)中證明:設(shè)下證之:設(shè)直線AB的方程為: x=ty+m與y2=2px聯(lián)立得消去x得y2=2pty-2pm=0,由韋達(dá)定理得
(2)中:因為三條直線AN,MN,BN的斜率成等差數(shù)列,下證之
設(shè)點(diǎn)N(-m,n),則直線AN的斜率KAN=,直線BN的斜率KBN=
KAN+KBN=+
本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.
【解析】T,i關(guān)系如下圖:
T | 1 |
|
|
|
|
i | 2 | 3 | 4 | 5 | 6 |
【答案】
設(shè)函數(shù),則的值域是
(A) (B) (C)(D)
【答案】D
如圖所示,四面體被一平面所截,截面是一個平行四邊形.求證:;
【答案】(理)證明:EH∥FG,EH面,面
EH∥面,又CD面,EH∥CD, 又EH面EFGH,CD面EFGH
EH∥BD
【解析】本試題主要是考查了空間四面體中線面位置關(guān)系的判定。
要證明線面平行可知通過線線平行,結(jié)合判定定理得到結(jié)論。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com