已知且.函數(shù)和的圖象只能是 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.

(Ⅰ)求實(shí)數(shù)的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說明理由.

【解析】第一問當(dāng)時(shí),,則。

依題意得:,即    解得

第二問當(dāng)時(shí),,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

第三問假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點(diǎn)的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

(Ⅰ)當(dāng)時(shí),,則

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當(dāng)時(shí),,令

當(dāng)變化時(shí),的變化情況如下表:

0

0

+

0

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

,,!上的最大值為2.

②當(dāng)時(shí), .當(dāng)時(shí), ,最大值為0;

當(dāng)時(shí), 上單調(diào)遞增!最大值為。

綜上,當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為2;

當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為。

(Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點(diǎn)的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時(shí)

代入(*)式得:    即   (**)

 ,則

上單調(diào)遞增,  ∵     ∴,∴的取值范圍是

∴對(duì)于,方程(**)總有解,即方程(*)總有解。

因此,對(duì)任意給定的正實(shí)數(shù),曲線上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上

 

查看答案和解析>>

已知a>0且a≠1,則兩函數(shù)f(x)=axg(x)=loga的圖象只可能是(  )

 

查看答案和解析>>

已知a>0且a≠1,則兩函數(shù)f(x)=axg(x)=loga的圖象只可能是(  )

查看答案和解析>>

已知a>0且a≠1,則兩函數(shù)f(x)=axg(x)=loga的圖象只可能是 (  )

查看答案和解析>>

已知a>0且a≠1,則兩函數(shù)f(x)=axg(x)=loga的圖象只可能是      (  )

查看答案和解析>>

一、選擇題

DDDCC         CDAAB

二、填空題

11、           12、        13、     14、17    0     15、②③

三、解答題

16、⑴

         

      

 

17、(1),其定義域?yàn)?sub>.

.……………………………………………………2′

當(dāng)時(shí),當(dāng)時(shí),故當(dāng)且僅當(dāng)時(shí),.   6′

(2)

由(1)知,     …………………………9′

…………………………………………12′′18、(1)符合二項(xiàng)分布

0

1

2

3

4

5

6

……6′

(2)可取15,16,18.

*表示勝5場(chǎng)負(fù)1場(chǎng),;………………………………7′

表示勝5場(chǎng)平1場(chǎng),;………………………………8′

*表示6場(chǎng)全勝,.……………………………………………9′

.………………………………………………………………12(

19、解:(1)以所在直線為軸,以所在直線為軸,以所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,由題意可知、………2′

                   的坐標(biāo)為     

,              

                      而,

的公垂線…………………………………………………………4′

(2)令面的法向量,

,則,即而面的法向量

……6′ ∴二面角的大小為.……8′

(3)    面的法向量為     到面的距離為

     即到面的距離為.…………12′

20、解:(1)假設(shè)存在,使,則,同理可得,以此類推有,這與矛盾。則不存在,使.……3分

(2)∵當(dāng)時(shí),

,,則

相反,而,則.以此類推有:

,;……7分

(3)∵當(dāng)時(shí),,,則

 …9分

。)……10分

.……12分

21、解(1)設(shè)     

          

①-②得

   ……………………2′

直線的方程是  整理得………………4′

(2)聯(lián)立解得

設(shè)

的方程為聯(lián)立消去,整理得

………………………………6′

 

          又

…………………………………………8′

(3)直線的方程為,代入,得

………………………………………………10′

三點(diǎn)共線,三點(diǎn)共線,且在拋物線的內(nèi)部。

故由可推得

  同理可得:

………………………………14′

 

 


同步練習(xí)冊(cè)答案