題4分.對于定義在上的函數.可以證明點是圖像的一個對稱點的充要條件是,.(1) 求函數圖像的一個對稱點,(2)函數在R上是奇函數.求a,b滿足的條件,并討論在區(qū)間[-1.1]上是否存在常數a.使得恒成立?(3)試寫出函數的圖像關于直線對稱的充要條件,利用所學知識.研究函數圖像的對稱性.南匯區(qū)2009年高考模擬考試高三數學理科答案 查看更多

 

題目列表(包括答案和解析)

(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)

現有變換公式可把平面直角坐標系上的一點變換到這一平面上的一點.

(1)若橢圓的中心為坐標原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標準方程,并求出其兩個焦點經變換公式變換后得到的點的坐標;

(2) 若曲線上一點經變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點. 求(1)中的橢圓在變換下的所有不動點的坐標;

(3) 在(2)的基礎上,試探究:中心為坐標原點、對稱軸為坐標軸的橢圓和雙曲線在變換下的不動點的存在情況和個數.

查看答案和解析>>

(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)

定義變換可把平面直角坐標系上的點變換到這一平面上的點.特別地,若曲線上一點經變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點.

(1)若橢圓的中心為坐標原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標準方程. 并求出當時,其兩個焦點、經變換公式變換后得到的點的坐標;

(2)當時,求(1)中的橢圓在變換下的所有不動點的坐標;

(3)試探究:中心為坐標原點、對稱軸為坐標軸的雙曲線在變換

,)下的不動點的存在情況和個數.

查看答案和解析>>

(本題滿分18分,第1小題4分,第2小題6分,第3小題8分)

已知數列{an}滿足,(其中λ≠0且λ≠–1,n∈N*),為數列{an}的前項和.

(1) 若,求的值;

(2) 求數列{an}的通項公式

(3) 當時,數列{an}中是否存在三項構成等差數列,若存在,請求出此三項;若不存在,請說明理由.

 

查看答案和解析>>

(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)

定義變換可把平面直角坐標系上的點變換到這一平面上的點.特別地,若曲線上一點經變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點.

(1)若橢圓的中心為坐標原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標準方程. 并求出當時,其兩個焦點、經變換公式變換后得到的點的坐標;

(2)當時,求(1)中的橢圓在變換下的所有不動點的坐標;

(3)試探究:中心為坐標原點、對稱軸為坐標軸的雙曲線在變換

)下的不動點的存在情況和個數.

 

查看答案和解析>>

(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)

現有變換公式可把平面直角坐標系上的一點變換到這一平面上的一點.

(1)若橢圓的中心為坐標原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標準方程,并求出其兩個焦點、經變換公式變換后得到的點的坐標;

(2) 若曲線上一點經變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點. 求(1)中的橢圓在變換下的所有不動點的坐標;

(3) 在(2)的基礎上,試探究:中心為坐標原點、對稱軸為坐標軸的橢圓和雙曲線在變換下的不動點的存在情況和個數.

 

查看答案和解析>>


同步練習冊答案