設(shè)A.B兩城市之間有6條網(wǎng)線.它們能通過的信息量分別為1.1.2.2.3.3.現(xiàn)從中任三條網(wǎng)線.設(shè)可通過的信息量為x.當(dāng)可通過的信息量x≥6時.則保證信息暢通.求線路信息暢通的概率. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)
如圖:A、B兩城相距100 km,某天燃氣公司計劃在兩地之間建一天燃氣站D AB兩城供氣. 已知D地距Ax km,為保證城市安全,天燃氣站距兩城市的距離均不得少于10km . 已知建設(shè)費用y (萬元)與A、B兩地的供氣距離(km)的平方和成正比,當(dāng)天燃氣站D距A城的距離為40km時, 建設(shè)費用為1300萬元.(供氣距離指天燃氣站距到城市的距離)
(1)把建設(shè)費用y(萬元)表示成供氣距離x (km)的函數(shù),并求定義域;
(2)天燃氣供氣站建在距A城多遠,才能使建設(shè)供氣費用最小.,最小費用是多少?

查看答案和解析>>

(本小題滿分12分)如圖:A、B兩城相距100 km,某天燃氣公司計劃在兩地之間建一天燃氣站D A、B兩城供氣. 已知D地距Ax km,為保證城市安全,天燃氣站距兩城市的距離均不得少于10km . 已知建設(shè)費用y (萬元)與A、B兩地的供氣距離(km)的平方和成正比,當(dāng)天燃氣站D距A城的距離為40km時, 建設(shè)費用為1300萬元.(供氣距離指天燃氣站距到城市的距離)

(1)把建設(shè)費用y(萬元)表示成供氣距離x (km)的函數(shù),并求定義域;

(2)天燃氣供氣站建在距A城多遠,才能使建設(shè)供氣費用最小.,最小費用是多少?

 

 

 

查看答案和解析>>

(本小題滿分12分)
如圖:A、B兩城相距100 km,某天燃氣公司計劃在兩地之間建一天燃氣站D A、B兩城供氣. 已知D地距Ax km,為保證城市安全,天燃氣站距兩城市的距離均不得少于10km . 已知建設(shè)費用y (萬元)與A、B兩地的供氣距離(km)的平方和成正比,當(dāng)天燃氣站D距A城的距離為40km時, 建設(shè)費用為1300萬元.(供氣距離指天燃氣站距到城市的距離)
(1)把建設(shè)費用y(萬元)表示成供氣距離x (km)的函數(shù),并求定義域;
(2)天燃氣供氣站建在距A城多遠,才能使建設(shè)供氣費用最小.,最小費用是多少?

查看答案和解析>>

(本小題滿分12分)

為了加快經(jīng)濟的發(fā)展,某市選擇A、B兩區(qū)作為龍頭帶動周邊地區(qū)的發(fā)展,決定在A、B兩區(qū)的周邊修建城際快速通道,假設(shè)A、B兩區(qū)相距個單位距離,城際快速通道所在的曲線為E,使快速通道E上的點到兩區(qū)的距離之和為4個單位距離.

   (Ⅰ)以線段AB的中點O為原點建立如圖所示的直角坐標系,求城際快速通道所在曲線E的方程;

   (Ⅱ)若有一條斜率為的筆直公路l與曲線E交于PQ兩點,同時在曲線E上建一個加油站M(橫坐標為負值)滿足,面積的最大值.                                

 

查看答案和解析>>

(本小題滿分12分)
為了加快經(jīng)濟的發(fā)展,某市選擇A、B兩區(qū)作為龍頭帶動周邊地區(qū)的發(fā)展,決定在A、B兩區(qū)的周邊修建城際快速通道,假設(shè)A、B兩區(qū)相距個單位距離,城際快速通道所在的曲線為E,使快速通道E上的點到兩區(qū)的距離之和為4個單位距離.

(Ⅰ)以線段AB的中點O為原點建立如圖所示的直角坐標系,求城際快速通道所在曲線E的方程;
(Ⅱ)若有一條斜率為的筆直公路l與曲線E交于PQ兩點,同時在曲線E上建一個加油站M(橫坐標為負值)滿足,面積的最大值.                               

查看答案和解析>>

一、選擇題(本大題12小題,每小題5分,共60分)

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

C

D

D

A

B

C

C

C

A

D

A

二、填空題(本大題共4小題,每小題4分,共16分)

13.4949;      14.[]            15.②④;             16.x<0或x>2

三、解答題(本大題共6小題共74分)

17.解(1)設(shè),由,有x+y=-1                         ①……………1分

  的夾角為,有,

  ∴,則x2+y2=1                                                             ②……………2分

  由①②解得,∴(-1,0)或(0,-1)       ……………4分

  (2)由2B=A+CB=                      ……………5分

  由垂直知(0,-1),則

                                  ……………6分

  ∴

  =1+                   ……………8分

  ∵0<A<

  ∴-1≤cos(2A+)<

  即                                                               ………………10分

  故                                                           ………………12分

18.解:(1)過點AAFCBCB延長線于點F,連結(jié)EF,則AF⊥平面BCC1B1,∠AEF為所求直線AE與平面BCC1B1所成的角.                 …………………2分

  在Rt△AEF中,AF=AEF=

  故直線AE與平面BCC1B1所成的角為arctan             …………………6分

  (2)以O為原點,OBx軸,OCy軸,建立空間直角坐標系O-xyz,則

    A (0,-),E (0,),D1 (-1,0,2)

                                          …………………8分

   設(shè)平面AED1的一個法向量

   取z=2,得=(3,-1,2)

   ∴點O到平面AED1的距離為d=              …………………12分

19.解(1)由(an+1+an+2+an+3)-(an+an+1+an+2)=1,

   ∴a1?a4,a7…,a3n-2是首項為1,公差為1的等差數(shù)列,

   ∴Pn=                                                …………………4分

   由

   ∴b2,b5,b8, …b3n-1是以1為首項,公比為-1的等比數(shù)列

   ∴Qn=                                 …………………8分

   (2)對于Pn≤100Qn

   當(dāng)n為偶數(shù)時,不等式顯然不成立;

   當(dāng)n為奇數(shù)時,,解得n=1,3,…,13.

所求之和為                                         ………………12分

20.解∵P(x=6)=                                                   ………………3分

  P(x=7)=                                             ………………6分

  P(x=8)=                                                      ………………9分

  ∴P(x≥6)=                                           ………………12分

  答:線路信息暢通的概率為

21.解:因為f(x)=3x2+6ax+b,由題設(shè)得

 

  解得:                                                       ………………4分

  ∴當(dāng)時,f(x)=3x2+6x+3=3(x+1)2≥0,于是f(x)不存在極值;

  當(dāng)時,f(x)=3x2+12x+9=3(x+1)(x+3),符合條件。    ………………6分

  且f(1)=20, f(0)=4,于是由題設(shè)得:3x2+12x+9≤20m-8在區(qū)間[-4,3]上恒成立,又f(x)=3x2+12x+9=3(x+2)2-3在區(qū)間 [-4,3]上的最大值為72.

 ∴,即實數(shù)m的取值范圍是.

22.(1)設(shè)M (x,y),則由O是原點得

  A (2,0),B  (2,1),C (0,1),從而(x,y),

 

  由得(x,y)?(x-2,y)=k[(x,y-1)?(x-2,y-1)-|y-1|2]

  即(1-k)x2+2(k-1)x+y2=0為所求軌跡方程                                   ………………4分

  ①當(dāng)k=1時,y=0動點M的軌跡是一條直線

②當(dāng)k≠1時,(x-1)2+

k=0時,動點M軌跡是一個圓

k>1時,動點M軌跡是一條雙曲線;

0<k<1或k<0時軌跡是一個橢圓 .                                     ………………6分

(2)當(dāng)k=時,動點M的軌跡方程為(x-1)2+2y2=1即y2=-(x-1)2

從而

又由(x-1)2+2y2=1   ∴0≤x≤2

∴當(dāng)x=時,的最大值為.

當(dāng)x=0時,的最大值為16.

的最大值為4,最小值為                     …………………10分

(3)由

①當(dāng)0<k<1時,a2=1,b2=1-k,c2=k

e2=k

②當(dāng)k<0時,e2=

k                                                      …………………14分

 


同步練習(xí)冊答案