題目列表(包括答案和解析)
(本小題滿分12分)
古代印度婆羅門教寺廟內(nèi)的僧侶們曾經(jīng)玩過一種被稱為“河內(nèi)寶塔問題”的游戲,其玩法如下:如圖,設有n()個圓盤依其半徑大小,大的在下,小的在上套在A柱上,現(xiàn)要將套在A柱上的盤換到C柱上,要求每次只能搬動一個,而且任何時候不允許將大盤套在小盤上面,假定有三根柱子A、B、C可供使用.
現(xiàn)用an表示將n個圓盤全部從A柱上移到C柱上所至少需要移動的次數(shù),回答下列問題:
(1) 寫出a1,a2,a3,并求出an;
(2) 記,求和();
(其中表示所有的積的和)
(3) 證明:.
(本小題滿分12分)已知函數(shù)f(x)=x3+x2-2.
(1)設{an}是正數(shù)組成的數(shù)列,前n項和為Sn,其中a1=3.若點(an,an+12-2an+1)(n∈N*)在函數(shù)y=f′(x)的圖象上,求證:點(n,Sn)也在y=f′(x)的圖象上;
(2)求函數(shù)f(x)在區(qū)間(a-1,a)內(nèi)的極值.
1. (本小題滿分12分)
古代印度婆羅門教寺廟內(nèi)的僧侶們曾經(jīng)玩過一種被稱為“河內(nèi)寶塔問題”的游戲,其玩法如下:如圖,設有n()個圓盤依其半徑大小,大的在下,小的在上套在A柱上,現(xiàn)要將套在A柱上的盤換到C柱上,要求每次只能搬動一個,而且任何時候不允許將大盤套在小盤上面,假定有三根柱子A、B、C可供使用.
現(xiàn)用an表示將n個圓盤全部從A柱上移到C柱上所至少需要移動的次數(shù),回答下列問題:
(1) 寫出a1,a2,a3,并求出an;
(2) 記,求和();
(其中表示所有的積的和)
(3) 證明:.
一、選擇題(本大題12小題,每小題5分,共60分)
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
D
D
A
B
C
C
B
C
A
D
A
二、填空題(本大題共4小題,每小題4分,共16分)
13.4949; 14.[] 15.②④; 16.x<0或x>2
三、解答題(本大題共6小題共74分)
17.解(1)設,由,有x+y=-1 ①……………1分
與的夾角為,有,
∴,則x2+y2=1 ②……………2分
由①②解得,(-1,0)或(0,-1) ……………4分
(2)由2B=A+C知B= ……………5分
由垂直知(0,-1),則
……………6分
∴
=1+ ……………8分
∵0<A<
∴-1≤cos(2A+)<
即 ………………10分
故 ………………12分
18.解:(1)過點A作AF⊥CB交CB延長線于點F,連結EF,則AF,則AF⊥平面BCC1B1,∠AEF為所求直線AE與閏面BCC1B1所成的角. …………………2分
在Rt△AEF中,AF=∠AEF=
故直線AE與平面BCC1B1所成的角為arctan …………………6分
(2)以O為原點,OB為x軸,OC為y軸,建立空間直角坐標系O-xyz,則
A(0,-),E(0,),D1(-1,0,2)
…………………8分
設平面AED1的一個法向量則
取z=2,得=(3,-1,2)
∴點O到平面AED1的呀離為d= …………………12分
19.解(1)由(an+1+an+2+an+3)-(an+an+1+an+2)=1,
∴a1?a4,a7…,a3n-2是首項為1,公差為1的等差數(shù)列,
∴Pn= …………………4分
由
∴b2,b5,b8, …b3n-1是以1為首項,公比為-1的等比數(shù)列
∴Qn= …………………8分
(2)對于Pn≤100Qn
當n為偶數(shù)時,不等式顯然不成立;
當n為奇數(shù)時, …………………12分
20.解(1)逐個計算,得
P(ξ=-16)=C; …………………1分
P(ξ=8)=C;
P(ξ=24)=C;
P(ξ=32)=C
故該儲蓄所每天余額ξ的 分布列為:
……………………6分
(2)該一天余額ξ的期望Eξ=(-16)×(萬元) …………9分
故儲蓄所每天備用現(xiàn)金至少為14×2=28(萬元) ……………………12分
答:為保證儲戶取款,儲芳所每天備用現(xiàn)金少28萬元。
21.解:(1)有f′(x)|x=1=1,故直線的斜率為1,切點為(1,f(1)),即(1,0)
∴直線l的方程為y=x-1. ……………………1分
直線l與y=g(x)的圖像相切,等價于方程組只有一解,
即方程有兩個相等實根,
∴△=1-4?有丙個相等實根,
(2)∵h(x)=ln(x+1)-x(x>-1),由h′(x)=
∵h′(x)>0,∴-1<x<0
∴當x∈(-1,0)時,f(x)是增函數(shù).
即f(x)產(chǎn)單調(diào)遞增區(qū)間為(-1,0). …………………6分
(3)令y1=f(1+x2)-g(x)=ln(1+x2)-
由y1′=
令y1′=0,則x=0,-1,1
當x變化時,y1′,y1的變化關系如下表;
x
(-∞,-1)
-1
(-1,0)
0
(0,1)
1
(1,+∞)
y′
+
0
-
0
+
0
-
y
ㄊ
極大值ln2
ㄋ
極小值1/2
ㄊ
極大值ln2
ㄋ
又因為y1=ln(1+x2)-為偶函數(shù),據(jù)此可畫
出y1=ln(1+x2)-示意圖如下
當k∈(ln2,+∞)時,方程無解;
當k=ln2或k∈時,方程有兩解;
當k=時,方程有三解;
當k∈()時,方程有四解. …………………12分
22.(1)設M(x,y),則由且O是原點得
A(2,0),B(2,1),C(0,1),從而(x,y),
由得(x,y)?(x-2,y)=k[(x,y-1)?(x-2,y-1)-|y-1|2]
即(1-k)x2+2(k-1)x+y2=0為所求軌跡方程 ………………4分
①當k=1時,y=0動點M的軌跡是一條直線
②當k≠1時,(x-1)2+
k=0時,動點M軌跡是一個圓
k>1時,動點M軌跡是一條雙曲線;
0<k<1或k<0時軌跡是一個橢圓 ………………6分
(2)當k=時,動點M的軌跡方程為(x-1)2+2y2=1即y2=-(x-1)2
從而
又由(x-1)2+2y2=1 ∴0≤x≤2
∴當x=時,的最大值為.
當x=0時,的最大值為16.
∴的最大值為4,最小值為 …………………10分
(3)由由得
①當0<k<1時,a2=1,b2=1-k,c2=k
∴e2=k ∴
②當k<0時,e2=
∴k∈ …………………14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com