如圖1.以點為坐標原點.以所在直線為軸.建立平面直角坐標系.則..由題意不妨設點 在第一象限().則由.得.即. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,一列載著危重病人的火車從O地出發(fā),沿射線OA方向行駛,其中sina=
10
10
,在距離O地5a(a為正常數(shù))千米,北偏東β角的N處住有一位醫(yī)學專家,其中sinβ=
3
5
,現(xiàn)120指揮中心緊急征調(diào)離O地正東p千米B處的救護車,先到N處載上醫(yī)學專家,再全速趕往乘有危重病人的火車,并在C處相遇.經(jīng)計算,當兩車行駛的路線與OB所圍成的三角形OBC面積S最小時,搶救最及時.
(1)在以O為原點,正北方向為y軸的直角坐標系中,求射線OA所在的直線方程;
(2)求S關于p的函數(shù)關系式S=f(p);
(3)當p為何值時,搶救最及時?

查看答案和解析>>

如圖,以長方體ABCD-A1B1C1D1的一個頂點D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立空間直角坐標系.已知點B1的坐標是(2,1,1).
(1)證明向量
AD1
,
A1C1
,
BA1
是共面向量;
(2)求異面直線AC1與A1D所成角的余弦值;
(3)求二面角C-AC1-D的平面角的余弦值.

查看答案和解析>>

如圖,在長方體AC1中,AB=BC=2,AA1=
2
,點E、F分別是面A1C1、面BC1的中心.以D為坐標原點,DA、DC、DD1所為直線為x,y,z軸建立空間直角坐標系,試用向量方法解決下列問題:
(1)求異面直線AF和BE所成的角;
(2)求直線AF和平面BEC所成角的正弦值.

查看答案和解析>>

如圖,在長方體AC1中,,點E、F分別是面A1C1、面BC1的中心.以D為坐標原點,DA、DC、DD1所為直線為x,y,z軸建立空間直角坐標系,試用向量方法解決下列問題:
(1)求異面直線AF和BE所成的角;
(2)求直線AF和平面BEC所成角的正弦值.

查看答案和解析>>

如圖,已知定點F(-1,0),N(1,0),以線段FN為對角線作周長是4的平行四邊形MNEF.平面上的動點G滿足||=2(O為坐標原點)
(I)求點E、M所在曲線C1的方程及動點G的軌跡C2的方程;
(Ⅱ)已知過點F的直線l交曲線C1于點P、Q,交軌跡C2于點A、B,若||∈(),求△NPQ內(nèi)切圓的半徑的取值范圍.

查看答案和解析>>

1. 構造向量,,所以,.由數(shù)量積的性質(zhì),得,即的最大值為2.

2. ∵,令,所以,當時,,當時,,所以當時,.

3.∵,∴,,又,∴,則,所以周期.作出上的圖象知:若,滿足條件的)存在,且,關于直線對稱,,關于直線對稱,∴;若,滿足條件的)存在,且,關于直線對稱,,關于直線對稱,

4. 不等式)表示的區(qū)域是如圖所示的菱形的內(nèi)部,

,

,點到點的距離最大,此時的最大值為

,點到點的距離最大,此時的最大值為3.

5. 由于已有兩人分別抽到5和14兩張卡片,則另外兩人只需從剩下的18張卡片中抽取,共有種情況.抽到5 和14的兩人在同一組,有兩種情況:

(1) 5 和14 為較小兩數(shù),則另兩人需從15~20這6張中各抽1張,有種情況;

(2) 5 和14 為較大兩數(shù),則另兩人需從1~4這4張中各抽1張,有種情況.

于是,抽到5 和14 兩張卡片的兩人在同一組的概率為.

6. ∵,∴,

,,則.

作出該不等式組表示的平面區(qū)域(圖中的陰影部分).

,則,它表示斜率為的一組平行直線,易知,當它經(jīng)過點時,取得最小值.

解方程組,得,∴


同步練習冊答案