題目列表(包括答案和解析)
【解析】觀察三視圖知該三棱錐的底面為一直角三角形,右側(cè)面也是一直角三角形.故體積等于.
【答案】1
已知,(其中)
⑴求及;
⑵試比較與的大小,并說(shuō)明理由.
【解析】第一問(wèn)中取,則; …………1分
對(duì)等式兩邊求導(dǎo),得
取,則得到結(jié)論
第二問(wèn)中,要比較與的大小,即比較:與的大小,歸納猜想可得結(jié)論當(dāng)時(shí),;
當(dāng)時(shí),;
當(dāng)時(shí),;
猜想:當(dāng)時(shí),運(yùn)用數(shù)學(xué)歸納法證明即可。
解:⑴取,則; …………1分
對(duì)等式兩邊求導(dǎo),得,
取,則。 …………4分
⑵要比較與的大小,即比較:與的大小,
當(dāng)時(shí),;
當(dāng)時(shí),;
當(dāng)時(shí),; …………6分
猜想:當(dāng)時(shí),,下面用數(shù)學(xué)歸納法證明:
由上述過(guò)程可知,時(shí)結(jié)論成立,
假設(shè)當(dāng)時(shí)結(jié)論成立,即,
當(dāng)時(shí),
而
∴
即時(shí)結(jié)論也成立,
∴當(dāng)時(shí),成立。 …………11分
綜上得,當(dāng)時(shí),;
當(dāng)時(shí),;
當(dāng)時(shí),
已知是公差為d的等差數(shù)列,是公比為q的等比數(shù)列
(Ⅰ)若 ,是否存在,有?請(qǐng)說(shuō)明理由;
(Ⅱ)若(a、q為常數(shù),且aq0)對(duì)任意m存在k,有,試求a、q滿(mǎn)足的充要條件;
(Ⅲ)若試確定所有的p,使數(shù)列中存在某個(gè)連續(xù)p項(xiàng)的和式數(shù)列中的一項(xiàng),請(qǐng)證明.
【解析】第一問(wèn)中,由得,整理后,可得、,為整數(shù)不存在、,使等式成立。
(2)中當(dāng)時(shí),則
即,其中是大于等于的整數(shù)
反之當(dāng)時(shí),其中是大于等于的整數(shù),則,
顯然,其中
、滿(mǎn)足的充要條件是,其中是大于等于的整數(shù)
(3)中設(shè)當(dāng)為偶數(shù)時(shí),式左邊為偶數(shù),右邊為奇數(shù),
當(dāng)為偶數(shù)時(shí),式不成立。由式得,整理
當(dāng)時(shí),符合題意。當(dāng),為奇數(shù)時(shí),
結(jié)合二項(xiàng)式定理得到結(jié)論。
解(1)由得,整理后,可得、,為整數(shù)不存在、,使等式成立。
(2)當(dāng)時(shí),則即,其中是大于等于的整數(shù)反之當(dāng)時(shí),其中是大于等于的整數(shù),則,
顯然,其中
、滿(mǎn)足的充要條件是,其中是大于等于的整數(shù)
(3)設(shè)當(dāng)為偶數(shù)時(shí),式左邊為偶數(shù),右邊為奇數(shù),
當(dāng)為偶數(shù)時(shí),式不成立。由式得,整理
當(dāng)時(shí),符合題意。當(dāng),為奇數(shù)時(shí),
由,得
當(dāng)為奇數(shù)時(shí),此時(shí),一定有和使上式一定成立。當(dāng)為奇數(shù)時(shí),命題都成立
數(shù)列,滿(mǎn)足
(1)求,并猜想通項(xiàng)公式。
(2)用數(shù)學(xué)歸納法證明(1)中的猜想。
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式求解,并用數(shù)學(xué)歸納法加以證明。第一問(wèn)利用遞推關(guān)系式得到,,,,并猜想通項(xiàng)公式
第二問(wèn)中,用數(shù)學(xué)歸納法證明(1)中的猜想。
①對(duì)n=1,等式成立。
②假設(shè)n=k時(shí),成立,
那么當(dāng)n=k+1時(shí),
,所以當(dāng)n=k+1時(shí)結(jié)論成立可證。
數(shù)列,滿(mǎn)足
(1),,,并猜想通項(xiàng)公。 …4分
(2)用數(shù)學(xué)歸納法證明(1)中的猜想。①對(duì)n=1,等式成立。 …5分
②假設(shè)n=k時(shí),成立,
那么當(dāng)n=k+1時(shí),
, ……9分
所以
所以當(dāng)n=k+1時(shí)結(jié)論成立 ……11分
由①②知,猜想對(duì)一切自然數(shù)n均成立
有以下三個(gè)不等式:
;
;
.
請(qǐng)你觀察這三個(gè)不等式,猜想出一個(gè)一般性的結(jié)論,并證明你的結(jié)論。
【解析】根據(jù)已知條件可知?dú)w納猜想結(jié)論為
下面給出運(yùn)用綜合法的思想求解和證明。解:結(jié)論為:. …………………5分
證明:
所以
1. 構(gòu)造向量,,所以,.由數(shù)量積的性質(zhì),得,即的最大值為2.
2. ∵,令得,所以,當(dāng)時(shí),,當(dāng)時(shí),,所以當(dāng)時(shí),.
3.∵,∴,,又,∴,則,所以周期.作出在上的圖象知:若,滿(mǎn)足條件的()存在,且,關(guān)于直線對(duì)稱(chēng),,關(guān)于直線對(duì)稱(chēng),∴;若,滿(mǎn)足條件的()存在,且,關(guān)于直線對(duì)稱(chēng),,關(guān)于直線對(duì)稱(chēng),
∴.
4. 不等式()表示的區(qū)域是如圖所示的菱形的內(nèi)部,
∵,
當(dāng),點(diǎn)到點(diǎn)的距離最大,此時(shí)的最大值為;
當(dāng),點(diǎn)到點(diǎn)的距離最大,此時(shí)的最大值為3.
5. 由于已有兩人分別抽到5和14兩張卡片,則另外兩人只需從剩下的18張卡片中抽取,共有種情況.抽到5 和14的兩人在同一組,有兩種情況:
(1) 5 和14 為較小兩數(shù),則另兩人需從15~20這6張中各抽1張,有種情況;
(2) 5 和14 為較大兩數(shù),則另兩人需從1~4這4張中各抽1張,有種情況.
于是,抽到5 和14 兩張卡片的兩人在同一組的概率為.
6. ∵,∴,
設(shè),,則.
作出該不等式組表示的平面區(qū)域(圖中的陰影部分).
令,則,它表示斜率為的一組平行直線,易知,當(dāng)它經(jīng)過(guò)點(diǎn)時(shí),取得最小值.
解方程組,得,∴
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com