[解析]由已知得.∴. 查看更多

 

題目列表(包括答案和解析)

已知

的值.

【解析】利用三角恒等變換得到函數(shù)值,

由于 

解析:   由    

 

查看答案和解析>>

已知在中,,,解這個(gè)三角形;

【解析】本試題主要考查了正弦定理的運(yùn)用。由正弦定理得到:,然后又       

再又得到c。

解:由正弦定理得到:

                      ……4分

      ……8分

    

 

查看答案和解析>>

求由拋物線與直線所圍成圖形的面積.

【解析】首先利用已知函數(shù)和拋物線作圖,然后確定交點(diǎn)坐標(biāo),然后利用定積分表示出面積為,所以得到,由此得到結(jié)論為

解:設(shè)所求圖形面積為,則

=.即所求圖形面積為

 

查看答案和解析>>

已知指數(shù)函數(shù),當(dāng)時(shí),有,解關(guān)于x的不等式

【解析】本試題主要考查了指數(shù)函數(shù),對(duì)數(shù)函數(shù)性質(zhì)的運(yùn)用。首先利用指數(shù)函數(shù),當(dāng)時(shí),有,,得到,從而

等價(jià)于,聯(lián)立不等式組可以解得

解:∵ 時(shí),有, ∴  。

于是由,得

解得, ∴ 不等式的解集為。

 

查看答案和解析>>

已知,(其中

⑴求;

⑵試比較的大小,并說(shuō)明理由.

【解析】第一問(wèn)中取,則;                         …………1分

對(duì)等式兩邊求導(dǎo),得

,則得到結(jié)論

第二問(wèn)中,要比較的大小,即比較:的大小,歸納猜想可得結(jié)論當(dāng)時(shí),;

當(dāng)時(shí),;

當(dāng)時(shí),;

猜想:當(dāng)時(shí),運(yùn)用數(shù)學(xué)歸納法證明即可。

解:⑴取,則;                         …………1分

對(duì)等式兩邊求導(dǎo),得

,則。       …………4分

⑵要比較的大小,即比較:的大小,

當(dāng)時(shí),

當(dāng)時(shí),;

當(dāng)時(shí),;                              …………6分

猜想:當(dāng)時(shí),,下面用數(shù)學(xué)歸納法證明:

由上述過(guò)程可知,時(shí)結(jié)論成立,

假設(shè)當(dāng)時(shí)結(jié)論成立,即

當(dāng)時(shí),

時(shí)結(jié)論也成立,

∴當(dāng)時(shí),成立。                          …………11分

綜上得,當(dāng)時(shí),;

當(dāng)時(shí),;

當(dāng)時(shí), 

 

查看答案和解析>>

1. 構(gòu)造向量,,所以,.由數(shù)量積的性質(zhì),得,即的最大值為2.

2. ∵,令,所以,當(dāng)時(shí),,當(dāng)時(shí),,所以當(dāng)時(shí),.

3.∵,∴,,又,∴,則,所以周期.作出上的圖象知:若,滿足條件的)存在,且,關(guān)于直線對(duì)稱,,關(guān)于直線對(duì)稱,∴;若,滿足條件的)存在,且,關(guān)于直線對(duì)稱,,關(guān)于直線對(duì)稱,

4. 不等式)表示的區(qū)域是如圖所示的菱形的內(nèi)部,

當(dāng),點(diǎn)到點(diǎn)的距離最大,此時(shí)的最大值為;

當(dāng),點(diǎn)到點(diǎn)的距離最大,此時(shí)的最大值為3.

5. 由于已有兩人分別抽到5和14兩張卡片,則另外兩人只需從剩下的18張卡片中抽取,共有種情況.抽到5 和14的兩人在同一組,有兩種情況:

(1) 5 和14 為較小兩數(shù),則另兩人需從15~20這6張中各抽1張,有種情況;

(2) 5 和14 為較大兩數(shù),則另兩人需從1~4這4張中各抽1張,有種情況.

于是,抽到5 和14 兩張卡片的兩人在同一組的概率為.

6. ∵,∴,

設(shè),則.

作出該不等式組表示的平面區(qū)域(圖中的陰影部分).

,則,它表示斜率為的一組平行直線,易知,當(dāng)它經(jīng)過(guò)點(diǎn)時(shí),取得最小值.

解方程組,得,∴


同步練習(xí)冊(cè)答案