9.已知函數(shù)圖象上點處的切線與直線 的夾角45°.則點的橫坐標(biāo)為 A.0 B.1 C.0或 D.1或 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)為常數(shù))圖象上點A處的切線與直線的夾角為,則A點的橫坐標(biāo)為         .

查看答案和解析>>

已知函數(shù)為常數(shù))圖象上處的切線與直線的夾角為45°,則點的橫坐標(biāo)為            

查看答案和解析>>

已知函數(shù)為常數(shù))圖象上處的切線與直線的夾角為45°,則點的橫坐標(biāo)為            

查看答案和解析>>

已知函數(shù)(m為常數(shù))圖象上A處的切線與平行,則點A的橫坐標(biāo)是( 。

A.       B.1      C.       D.

 

查看答案和解析>>

已知函數(shù)(m為常數(shù))圖象上A處的切線與平行,則點A的橫坐標(biāo)是(  )

A. B.1 C. D.

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分

題號

1

2

3

4

5

6

7

8

9

10

11

12

A

C

B

D

A

C

B

C

C

B

B

D

D

C

B

D

B

C

B

C

C

B

A

D

二、填空題:本大題共4小題,每小題5分,共20分

13.(理)2  (文)  14.(理) (文)243   15.  16.(1,2)(2,3)

三、解答題:本大題共6小題,共70分.

17.解:  ????????????????????????????????????????????????????????? (2分)

        由正弦定理得???????????????????????????????????????????? (4分)

        ??????????????????????????????????????????????????????????????? (5分)

??????????????????????????????????????????????? (6分)

???????????????????????????????????????????????????? (8分)

???????????????????????????????????????????????????????????????????????????????????????? (9分)

????????????????????????????????????????????????????????????????? (10分)

18.(理)解:????????????????????????????????????????? (2分)

            

    ??????????????????????????????????????????????????????????????????????????????????????????????????????????????? (4分)

             ????????????????????????????????????????? (6分)

??????????????????????????????????????????????????????????????????????????????????????????????? (8分)

     由此可知,,從而兩廠材料的抗拉強(qiáng)度指數(shù)平均水平相同,但甲廠材料相對穩(wěn)定,該選甲廠的材料。??????????????????????????????????????????????????????????????????????????????????????????????? (12分)

   (文)解:記“甲第次試跳成功“為事件,“乙第次試跳成功”為事件,依題意得且相互獨(dú)立?????????????????????????????????????????????????????????????? (2分)

        (I)“甲第三次試跳才成功”為事件,且三次試跳相互獨(dú)立,

         。

         答:甲第三次試跳才成功的概率為0.063????????????????????????????????????????? (6分)

        (Ⅱ)“甲、乙兩人在第一次試跳中至少有一人成功”為事件,

         解法一:且彼此互斥,

?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? (8分)

           

????????????????????????????????????????????????????????????????????????? (12分)

         解法二:

         答:甲、乙兩人在第一次試跳中至少有一人成功的概率為0.88

 

19.(I)證明:由直三棱柱性質(zhì)知

    又

   

???? …………………………………(理4分文6分)

   (Ⅱ)以A為原點,分別為

    軸,建立如圖的空間直角坐標(biāo)系

    直線

   

    連結(jié)易知是平面的一個法向量,

=(0,1,-1),設(shè)為平面

的一個法向量,則

令得得

設(shè)二面角的大小為,則

二面角的大小為…………………………(理8分文12分)

(Ⅲ)又

點到平面的距離………………………(理12分)

 

20.(理)解:(I)

當(dāng),即時,在上單調(diào)遞增

???????????????????????????????????? (2分)

??????????????????????????????? (4分)

?????????????????????????????????????????????????? (6分)

   (Ⅱ)令

??????????? (7分)

??????????? (10分)

??????????????????????????????????????????????????????????????????????????????????????????????????????????????? (12分)

   (文)解:(I)因為邊所在直線的方程為

 …………………………………(1分)

…………………………(4分)

   (Ⅱ)由??????????????????????????? (5分)

????????????????????????????????????????????????? (6分)

???????????????????????????? (8分)

   (Ⅲ)因為動圓過點,所以是該圓的半徑,又因為動圓與圓外切,

     所以,

     即

     故點的軌跡是以為焦點,實軸長為的雙曲線的左支。

     因為實半軸長半焦距

     所以虛半軸長

     從而動圓的圓心的軌跡方程為????????????????????????? (12分)

 

21.(理)

     解法一:(I)如圖,設(shè)把代入得

,由韋達(dá)定理得???????????????????????? (2分)

點的坐標(biāo)為???????????????????????????????? (3分)

設(shè)拋物線在點處的切線的方程為

將代入上式得

(Ⅱ)

由(I)知

???????????????????? (9分)

??????????????????? (11分)

?????????????????????????????????????????????????????????????????? (12分)

解法二:(I)設(shè)

??????????????????????? (2分)

????????????????????????????????????????????????????????????????????????????????????????????????????????????? (4分)

????????????????????? (6分)

(Ⅱ)

 由(I)知

 則

          

          

???????????????????????????????????????????????????????????????????????????????????? (10分)

 

??????????????????????????????????????????????????????????????????? (12分)

(文)解:(I)

 

     

?????????????????????????????????????????????????????????? (3分)

      由于,故當(dāng)時達(dá)到其最小值,即

      ??????????????????????????????????????????????????????????????????????????????? (6分)

     (Ⅱ)

      列表如下:

+

0

-

0

+

極大值

極小值

    ??????????????????????????????????????????????????????????????????????????????????????????????????????????????? (10分)

  由此可見,在區(qū)間和單調(diào)增加,在區(qū)間單調(diào)減小,

      極小值為極大值為?????????????????????????????????????????????? (12分)

22.  解:

     

     (I)????????????????????????????????????????????????? (2分)

     (Ⅱ)由(I)知

     

      ……

     

???????????????????????????????????????????? (5分)

     

????????????????????????????????????????????????????????? (8分)

     (文)(Ⅲ)

???????????????????????????????????????????????????????? (12分)

     (理)(Ⅲ)

     

     

?????????????????????????????????? (12分)

 


同步練習(xí)冊答案