B.橫坐標(biāo)伸長(zhǎng)到原來的2倍.再向右平行移動(dòng)個(gè)單位長(zhǎng)度, 查看更多

 

題目列表(包括答案和解析)

將函數(shù)的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),再向左平移個(gè)單位,所得函數(shù)的最小正周期為(    )

A.π                       B.2π             C.4π            D.8π

 

查看答案和解析>>

將函數(shù)的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),

再向左平移個(gè)單位,所得函數(shù)圖象的一條對(duì)稱軸為

A.           B.          C.            D.

 

查看答案和解析>>

將函數(shù)的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),再向左平移個(gè)單位,所得函數(shù)的最小正周期為( )
A.π
B.2π
C.4π
D.8π

查看答案和解析>>

將函數(shù)的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),再向左平移個(gè)單位,所得函數(shù)的最小正周期為( )
A.π
B.2π
C.4π
D.8π

查看答案和解析>>

將函數(shù)的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),再向左平移個(gè)單位,所得函數(shù)的最小正周期為( )
A.π
B.2π
C.4π
D.8π

查看答案和解析>>

一、選擇題

CCCBB   BBDAB   CA

二、填空題

13、       14、2      15、    16、③④

三、解答題

17.解:

                 

                      

建議評(píng)分標(biāo)準(zhǔn):每個(gè)三角函數(shù)“1”分。(下面的評(píng)分標(biāo)準(zhǔn)也僅供參考)

18.解:==--(2分)

= 

*      ----------------------------------------------------------(2分)

   

  -----2分)     原式= -------------(2分)

19.解:(1)由已知得,所以即三角形為等腰三角形。--------------------------------------------------------------------------------------------(3分)

(2)兩式平方相加得,所以。------(3分)

,則,所以,而

這與矛盾,所以---------------------------------------(2分)

20.解:化簡(jiǎn)得--------------------------------------------------(2分)

(1)最小正周期為;--------------------------------------------------------------(2分)

(2)單調(diào)遞減區(qū)間為-------------------------------(2分)

(3)對(duì)稱軸方程為-------------------------------------------(1分)

對(duì)稱中心為------------------------------------------------------(1分)

21.對(duì)方案Ⅰ:連接OC,設(shè),則

      而

當(dāng),即點(diǎn)C為弧的中點(diǎn)時(shí),矩形面積為最大,等于。

對(duì)方案Ⅱ:取弧EF的中點(diǎn)P,連接OP,交CD于M,交AB于N,設(shè)

如圖所示。

,

所以當(dāng),即點(diǎn)C為弧EF的四等分點(diǎn)時(shí),矩形面積為最大,等于

,所以選擇方案Ⅰ。

22.解:(1)不是休閑函數(shù),證明略

(2)由題意得,有解,顯然不是解,所以存在非零常數(shù)T,使,

于是有,所以是休閑函數(shù)。

(3)顯然時(shí)成立;

當(dāng)時(shí),由題義,,由值域考慮,只有,

當(dāng)時(shí),成立,則

當(dāng)時(shí),成立,則,綜合的的取值為

 

 

 


同步練習(xí)冊(cè)答案