的展開(kāi)式中的整數(shù)項(xiàng)是------------------- A.第12項(xiàng) B. 第13項(xiàng) C. 第14項(xiàng) D. 第15項(xiàng) 查看更多

 

題目列表(包括答案和解析)

(2012•六盤(pán)水)如圖是我國(guó)古代數(shù)學(xué)家楊輝最早發(fā)現(xiàn)的,稱(chēng)為“楊輝三角”.它的發(fā)現(xiàn)比西方要早五百年左右,由此可見(jiàn)我國(guó)古代數(shù)學(xué)的成就是非常值得中華民族自豪的!“楊輝三角”中有許多規(guī)律,如它的每一行的數(shù)字正好對(duì)應(yīng)了(a+b)n(n為非負(fù)整數(shù))的展開(kāi)式中a按次數(shù)從大到小排列的項(xiàng)的系數(shù).例如,(a+b)2=a2+2ab+b2展開(kāi)式中的系數(shù)1、2、1恰好對(duì)應(yīng)圖中第三行的數(shù)字;再如,(a+b)3=a3+3a2b+3ab2+b3展開(kāi)式中的系數(shù)1、3、3、1恰好對(duì)應(yīng)圖中第四行的數(shù)字.請(qǐng)認(rèn)真觀察此圖,寫(xiě)出(a+b)4的展開(kāi)式,(a+b)4=
a4+4a3b+6a2b2+4ab3+b4
a4+4a3b+6a2b2+4ab3+b4

查看答案和解析>>

探究題
如圖是我國(guó)古代數(shù)學(xué)家楊輝最早發(fā)現(xiàn)的,稱(chēng)為“楊輝三角”.它的發(fā)現(xiàn)比西方要早五百年左右,由此可見(jiàn)我國(guó)古代數(shù)學(xué)的成就是非常值得中華民族自豪的!“楊輝三角”中有許多規(guī)律,如它的每一行的數(shù)字正好對(duì)應(yīng)了(a+b)n(n為非負(fù)整數(shù))的展開(kāi)式中按a次冪從大到小排列的項(xiàng)的系數(shù).規(guī)定任何非零數(shù)的零次冪為1,如(a+b)0=1.例如,
(a+b)1=a+b展開(kāi)式中的系數(shù)1、1恰好對(duì)應(yīng)圖中第二行的數(shù)字;
(a+b)2=a2+2ab+b2展開(kāi)式中的系數(shù)1、2、1恰好對(duì)應(yīng)圖中第三行的數(shù)字;
(a+b)3=a3+3a2b+3ab2+b3展開(kāi)式中的系數(shù)1、3、3、1恰好對(duì)應(yīng)圖中第四行的數(shù)字.
(1)請(qǐng)認(rèn)真觀察此圖,寫(xiě)出(a+b)4的展開(kāi)式,(a+b)4=
a4+4a3b+6a2b2+4ab3+b4
a4+4a3b+6a2b2+4ab3+b4

(2)類(lèi)似地,請(qǐng)你探索并畫(huà)出(a-b)0,(a-b)1,(a-b)2,(a-b)3的展開(kāi)式中按a次冪從大到小排列的項(xiàng)的系數(shù)對(duì)應(yīng)的三角形.
(3)探究解決問(wèn)題:已知a+b=3,a2+b2=5,求ab的值.

查看答案和解析>>

右圖是我國(guó)古代數(shù)學(xué)家楊輝最早發(fā)現(xiàn)的,稱(chēng)為“楊輝三角形”.它的發(fā)現(xiàn)比西方要早五百年左右,由此可見(jiàn)我國(guó)古代數(shù)學(xué)的成就是非常值得中華民族自豪的!“楊輝三角形”中有許多規(guī)律,如它的每一行的數(shù)字正好對(duì)應(yīng)了為非負(fù)整數(shù))的展開(kāi)式中按次數(shù)從大到小排列的項(xiàng)的系數(shù).例如展開(kāi)式中的系數(shù)1、2、1恰好對(duì)應(yīng)圖中第三行的數(shù)字;再如,展開(kāi)式中的系數(shù)1、3、3、1恰好對(duì)應(yīng)圖中第四行的數(shù)字.請(qǐng)認(rèn)真觀察此圖,寫(xiě)出的展開(kāi)式.                    

 

查看答案和解析>>

如圖是我國(guó)古代數(shù)學(xué)家楊輝最早發(fā)現(xiàn)的,稱(chēng)為“楊輝三角”.它的發(fā)現(xiàn)比西方要早五百年左右,由此可見(jiàn)我國(guó)古代數(shù)學(xué)的成就是非常值得中華民族自豪的!“楊輝三角”中有許多規(guī)律,如它的每一行的數(shù)字正好對(duì)應(yīng)了(a+b)n(n為非負(fù)整數(shù))的展開(kāi)式中a按次數(shù)從大到小排列的項(xiàng)的系數(shù)。

例如,展開(kāi)式中的系數(shù)1、2、1恰好對(duì)應(yīng)圖中第三行的數(shù)字;

再如,展開(kāi)式中的系數(shù)1、3、3、1恰好對(duì)應(yīng)圖中第四行的數(shù)字。

請(qǐng)認(rèn)真觀察此圖,寫(xiě)出(a+b)4的展開(kāi)式,(a+b)4=    ▲   

 

查看答案和解析>>

右圖是我國(guó)古代數(shù)學(xué)家楊輝最早發(fā)現(xiàn)的,稱(chēng)為“楊輝三角形”.它的發(fā)現(xiàn)比西方要早五百年左右,由此可見(jiàn)我國(guó)古代數(shù)學(xué)的成就是非常值得中華民族自豪的!“楊輝三角形”中有許多規(guī)律,如它的每一行的數(shù)字正好對(duì)應(yīng)了為非負(fù)整數(shù))的展開(kāi)式中按次數(shù)從大到小排列的項(xiàng)的系數(shù).例如展開(kāi)式中的系數(shù)1、2、1恰好對(duì)應(yīng)圖中第三行的數(shù)字;再如,展開(kāi)式中的系數(shù)1、3、3、1恰好對(duì)應(yīng)圖中第四行的數(shù)字.請(qǐng)認(rèn)真觀察此圖,寫(xiě)出的展開(kāi)式.                    

查看答案和解析>>


同步練習(xí)冊(cè)答案