A. B. 2 C. 1 D.3 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)A.(不等式選講選做題)如果存在實(shí)數(shù)x使不等式|x+1|-|x-2|<k成立,則實(shí)數(shù)k的取值范圍是
 

B.(幾何證明選講選做題)如圖,圓O是△ABC的外接圓,過點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,CD=2
7
,AB=BC=3
,則AC的長(zhǎng)為
 

C.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系(ρ,θ)(0≤θ<2π)中,曲線
ρ=2sinθ與ρcosθ=-1的交點(diǎn)的極坐標(biāo)為
 

查看答案和解析>>

如果(     )

A.        B.{1,3}          C.{2,5}        D.{4}

 

查看答案和解析>>

如果(    )

A        B.{1,3}          C.{2,5}        D.{4}

 

查看答案和解析>>

 

A.{1,2,3,4}        B.{1,2}          C.{1,3}            D.{2,4}

 

查看答案和解析>>

=
[     ]
A.1
B.2
C.3
D.4

查看答案和解析>>

CBACA;DCADC;DB

30;9,27;1;

17. 解:易得                                            ………… 3分

當(dāng)a=1時(shí), B=,滿足;                           ………… 5分

當(dāng)時(shí),B={x|2a<x<a2+1},要使即BA,

必須,解之得                               ………… 8分

綜上可知,存在這樣的實(shí)數(shù)a滿足題設(shè)成立.       ………… 10分

18. 解: (1) 圖2是由四塊圖1所示地磚繞點(diǎn)按順時(shí)針旋轉(zhuǎn)后得到,△為等腰直角三角形,     四邊形是正方形.                                  …… 4分

(2) 設(shè),則,每塊地磚的費(fèi)用為,制成△、△和四邊形三種材料的每平方米價(jià)格依次為3a、2a、a (元),                          …… 6分

       

                                                

    .                                …… 10分

    由,當(dāng)時(shí),有最小值,即總費(fèi)用為最省. 

    答:當(dāng)米時(shí),總費(fèi)用最省.                             …… 12分

 

19. 解:(Ⅰ)易得的解集為恒成立.解得.………………… 3分

因此的對(duì)稱軸, 故函數(shù)在區(qū)間上不單調(diào),從而不存在反函數(shù)。                                                ……………………… 5分

(Ⅱ)由已知可得,則

,

.                          ………………………7分

①     若,則上單調(diào)遞增,在上無(wú)極值;

②     若,則當(dāng)時(shí),;當(dāng)時(shí),.

當(dāng)時(shí),有極小值在區(qū)間上存在極小值,.

③     若,則當(dāng)時(shí),;當(dāng)時(shí),.

*當(dāng)時(shí),有極小值.

在區(qū)間上存在極小值 .……………… 10分

綜上所述:當(dāng)時(shí),在區(qū)間上存在極小值! 12分

20. 解:(Ⅰ)當(dāng)時(shí),

,即數(shù)列的通項(xiàng)公式為       …… 4分

 (Ⅱ)當(dāng)時(shí),

當(dāng)               

                                …… 8分

由此可知,數(shù)列的前n項(xiàng)和                  …… 12分

21. 解:(Ⅰ).                          …… 4分

(Ⅱ)易得的值域?yàn)锳=,設(shè)函數(shù)的值域B,若對(duì)于任意總存在,使得成立,只需。               …… 6分

顯然當(dāng)時(shí),,不合題意;

當(dāng)時(shí),,故應(yīng)有,解之得: ;…… 8分

當(dāng)時(shí),,故應(yīng)有,解之得:! 10分

綜上所述,實(shí)數(shù)的取值范圍為。               …… 12分

22. 解:(Ⅰ).

                                                                …… 3分

  (Ⅱ) …… 6分

  ,

 由錯(cuò)位相減法得:

    

所以:。   …… 8分

  (Ⅲ)

為遞增數(shù)列 。

 中最小項(xiàng)為     …… 12分

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


同步練習(xí)冊(cè)答案