(Ⅰ)如果關于的不等式的解集為.試問函數(shù)在區(qū)間上是否存在反函數(shù)?若存在.求出來,若不存在.說明理由. 查看更多

 

題目列表(包括答案和解析)

如果關于的不等式的解集為R,則的取值范圍是        。

 

查看答案和解析>>

在數(shù)列中,對于任意,等式:恒成立,其中常數(shù)

(1)求的值;

(2)求證:數(shù)列為等比數(shù)列;

(3)如果關于的不等式的解集為,試求實數(shù)的取值范圍.

 

查看答案和解析>>

如果關于的不等式的解集是[x1,x2]∪[x3,x4](x1<x2<x3<x4),則x1+x2+x3+x4=  ▲ 

 

查看答案和解析>>

如果關于的不等式的解集分別為,那么稱這兩個不等式為對偶不等式.如果不等式與不等式為對偶不等式,且,那么______.

 

查看答案和解析>>

已知關于的不等式,
(1)當時,解上述不等式;
(2)如果關于的不等式的解集為空集,求實數(shù)的取值范圍。

查看答案和解析>>

CBACA;DCADC;DB

30;9,27;1;

17. 解:易得                                            ………… 3分

當a=1時, B=,滿足;                           ………… 5分

時,B={x|2a<x<a2+1},要使即BA,

必須,解之得                               ………… 8分

綜上可知,存在這樣的實數(shù)a滿足題設成立.       ………… 10分

18. 解: (1) 圖2是由四塊圖1所示地磚繞點按順時針旋轉后得到,△為等腰直角三角形,     四邊形是正方形.                                  …… 4分

(2) 設,則,每塊地磚的費用為,制成△、△和四邊形三種材料的每平方米價格依次為3a、2a、a (元),                          …… 6分

       

                                                

    .                                …… 10分

    由,當時,有最小值,即總費用為最省. 

    答:當米時,總費用最省.                             …… 12分

 

19. 解:(Ⅰ)易得,的解集為恒成立.解得.………………… 3分

因此的對稱軸, 故函數(shù)在區(qū)間上不單調,從而不存在反函數(shù)。                                                ……………………… 5分

(Ⅱ)由已知可得,則

,

.                          ………………………7分

①     若,則上單調遞增,在上無極值;

②     若,則當時,;當時,.

時,有極小值在區(qū)間上存在極小值,.

③     若,則當時,;當時,.

*時,有極小值.

在區(qū)間上存在極小值 .……………… 10分

綜上所述:當時,在區(qū)間上存在極小值! 12分

20. 解:(Ⅰ)當時,

,即數(shù)列的通項公式為       …… 4分

 (Ⅱ)當時,

               

                                …… 8分

由此可知,數(shù)列的前n項和                  …… 12分

21. 解:(Ⅰ).                          …… 4分

(Ⅱ)易得的值域為A=,設函數(shù)的值域B,若對于任意總存在,使得成立,只需。               …… 6分

顯然當時,,不合題意;

時,,故應有,解之得: ;…… 8分

時,,故應有,解之得:。…… 10分

綜上所述,實數(shù)的取值范圍為。               …… 12分

22. 解:(Ⅰ).

                                                                …… 3分

  (Ⅱ) …… 6分

 

 由錯位相減法得:,

    

所以:。   …… 8分

  (Ⅲ)

為遞增數(shù)列 。

 中最小項為     …… 12分

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


同步練習冊答案