解:(1) ∵.依題意.∴.∴ ---------1分又∵.依題意∴.∴ ---------2分∴ ------------------------3分可知∴在上為減函數(shù).且 ∵在上為增函數(shù).∴∴.∴ ---------5分又∵在上.∴依題意有∴ ------------------------6分(3)證明:∵ ------7分①當(dāng)時(shí)..原式成立---8分②當(dāng)時(shí). --------9分-----10分由已知..∴原不等式成立∴綜上所述. ---------12分 查看更多

 

題目列表(包括答案和解析)

已知函數(shù).

(Ⅰ)若函數(shù)依次在處取到極值.求的取值范圍;

(Ⅱ)若存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立.求正整數(shù)的最大值.

【解析】第一問(wèn)中利用導(dǎo)數(shù)在在處取到極值點(diǎn)可知導(dǎo)數(shù)為零可以解得方程有三個(gè)不同的實(shí)數(shù)根來(lái)分析求解。

第二問(wèn)中,利用存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立轉(zhuǎn)化為,恒成立,分離參數(shù)法求解得到范圍。

解:(1)

(2)不等式 ,即,即.

轉(zhuǎn)化為存在實(shí)數(shù),使對(duì)任意的,不等式恒成立.

即不等式上恒成立.

即不等式上恒成立.

設(shè),則.

設(shè),則,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911530204634527/SYS201207091153477963415106_ST.files/image016.png">,有.

在區(qū)間上是減函數(shù)。又

故存在,使得.

當(dāng)時(shí),有,當(dāng)時(shí),有.

從而在區(qū)間上遞增,在區(qū)間上遞減.

[來(lái)源:]

所以當(dāng)時(shí),恒有;當(dāng)時(shí),恒有;

故使命題成立的正整數(shù)m的最大值為5

 

查看答案和解析>>

已知,函數(shù)

(1)當(dāng)時(shí),求函數(shù)在點(diǎn)(1,)的切線方程;

(2)求函數(shù)在[-1,1]的極值;

(3)若在上至少存在一個(gè)實(shí)數(shù)x0,使>g(xo)成立,求正實(shí)數(shù)的取值范圍。

【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中,那么當(dāng)時(shí),  又    所以函數(shù)在點(diǎn)(1,)的切線方程為;(2)中令   有 

對(duì)a分類討論,和得到極值。(3)中,設(shè),,依題意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  當(dāng)時(shí),  又    

∴  函數(shù)在點(diǎn)(1,)的切線方程為 --------4分

(Ⅱ)令   有 

①         當(dāng)時(shí)

(-1,0)

0

(0,

,1)

+

0

0

+

極大值

極小值

的極大值是,極小值是

②         當(dāng)時(shí),在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無(wú)極小值。 

綜上所述   時(shí),極大值為,無(wú)極小值

時(shí)  極大值是,極小值是        ----------8分

(Ⅲ)設(shè),

對(duì)求導(dǎo),得

,    

在區(qū)間上為增函數(shù),則

依題意,只需,即 

解得  (舍去)

則正實(shí)數(shù)的取值范圍是(,

 

查看答案和解析>>

已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

(1)求f(x)的解析式;

(2)若過(guò)點(diǎn)A(2,m)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問(wèn),利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中設(shè)切點(diǎn)為(x0,x03-3x0),因?yàn)檫^(guò)點(diǎn)A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依題意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)設(shè)切點(diǎn)為(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

又切線過(guò)點(diǎn)A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

則g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

畫(huà)出草圖知,當(dāng)-6<m<2時(shí),m=-2x3+6x2-6有三解,

所以m的取值范圍是(-6,2).

 

查看答案和解析>>

已知中心在原點(diǎn)O,焦點(diǎn)F1、F2在x軸上的橢圓E經(jīng)過(guò)點(diǎn)C(2,2),且拋物線的焦點(diǎn)為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點(diǎn),當(dāng)以AB為直徑的圓P與y軸相切時(shí),求直線l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運(yùn)用。第一問(wèn)中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點(diǎn)坐標(biāo)得到,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120259226615718_ST.files/image003.png">,這樣可知得到。第二問(wèn)中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。

解:(Ⅰ)設(shè)橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

、………………8分

………………………9分

……………………………10分

    當(dāng)m=3時(shí),直線l方程為y=-x+3,此時(shí),x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當(dāng)m=-3時(shí),直線l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

查看答案和解析>>


同步練習(xí)冊(cè)答案