題目列表(包括答案和解析)
設(shè)是奇函數(shù),若曲線的一條切線的斜率是,則切點(diǎn)的橫坐標(biāo)為 ( )
A. B.— C. D.
(本題滿分18分,第1小題6分,第2小題6分,第3小題6分)
對(duì)于定義在D上的函數(shù),若同時(shí)滿足
(Ⅰ)存在閉區(qū)間,使得任取,都有是常數(shù));
(Ⅱ)對(duì)于D內(nèi)任意,當(dāng)時(shí)總有,則稱為“平底型”函數(shù)。
(1)判斷是否是“平底型”函數(shù)?簡(jiǎn)要說(shuō)明理由;
(2)設(shè)是(1)中的“平底型”函數(shù),若,對(duì)一切恒成立,求實(shí)數(shù)的范圍;
(3)若是“平底型”函數(shù),求和滿足的條件,并說(shuō)明理由。
設(shè),函數(shù)的導(dǎo)函數(shù)是奇函數(shù),若曲線的一條切線斜率為,則切點(diǎn)的橫坐標(biāo)為 ( )
A. B. C. D.
設(shè),函數(shù)的導(dǎo)函數(shù)是,且是奇函數(shù),若曲線的一條切線的斜率是,則切點(diǎn)的橫坐標(biāo)為( )
A. B. C. D.
已知函數(shù),若直線對(duì)任意的都不是曲線的切線,則的取值范圍是 .
一、選擇題
1.C 2.B 3.C 4.C 5.A 6.C
7.B 8.D 9.C 10.C 11.D 12.D
二、填空題
13. 14.3 15. 16.②
三、解答題
17.解:由得, ---------------2分
則=3,即, ---------------8分
從而 ----------------12分
18. 解:(1)∵f (x)=2sinxcos+cos x+a=sin x+cos x+a
=2sin(x+)+a, ……4分
∴函數(shù)f(x)的最小正周期T=2π. ……6分
(Ⅱ)∵x∈[-,],∴-≤x+≤. …….7分
∴當(dāng)x+=-,即x=-時(shí), fmin(x)=f(-)=-+a; ……9分
當(dāng)x+=,即x=時(shí), fmax(x)=f()=2+a. ……11分
由題意,有(-+a)+(2+a)=.
∴a=-1. ……12分
19.(本小題滿分12分)
(1)由題意得的最小正周期為 -----------2分
-------------4分
又是它的一個(gè)對(duì)稱中心,
----------------------6分
------------------------7分
(2)因?yàn)?sub>, ------------------------8分
所以欲滿足條件,必須 -------------------11分
即a的最大值為 -------------------12分
20. 解:(Ⅰ)當(dāng)每輛車(chē)的月租金定為3600元時(shí),未租出的車(chē)輛數(shù)為,
所以這時(shí)租出了88輛車(chē). -----------------------4分
(Ⅱ)設(shè)每輛車(chē)的月租金定為x元,則租賃公司的月收益為
, -------------------------8分
整理得.
所以,當(dāng)x=4100時(shí),最大,最大值為,
即當(dāng)每輛車(chē)的月租金定為4100元時(shí),租賃公司的月收益最大,
最大月收益為304200元. --------------------12分
21.解: (Ⅰ)∵為奇函數(shù),∴
即
∴ ----------------------1分
∵的最小值為,
-----------3分
又直線的斜率為
因此, ------------5分
∴,,. -------------6分
(Ⅱ).
,列表如下:
得分 評(píng)卷人
極大
極小
所以函數(shù)的單調(diào)增區(qū)間是和. -----------9分
∵,,
∴在上的最大值是,最小值是. ---------12分
22. 解:(1)是奇函數(shù),
------------------4分
(2)又在[-1,1]上單調(diào)遞減,------6分
----------------------------------------------------8分
令
則 ----------------------------12分
-------------------------------14分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com