(Ⅱ)若函數(shù)f(x)在[-.]上的最大值與最小值之和為.求實數(shù)a. 查看更多

 

題目列表(包括答案和解析)

若函數(shù)f(x)在[m,n]上是單調函數(shù),則函數(shù)f(x)在[m,n]上的最大值與最小值之差為(    )。

查看答案和解析>>

若函數(shù)f(x)=
2sin(x+
π
6
)+x4+x
x4+cosx
+1
[-
π
2
,
π
2
]
上的最大值與最小值分別為M與N,則有( 。
A、M-N=2
B、M+N=2
C、M-N=4
D、M+N=4

查看答案和解析>>

若函數(shù)f(x)=
1-x
mx
+lnx(m∈R+)

(1)若f(x)在[1,+∞)上為增函數(shù),求m的范圍.
(2)當m=1時,若a>b>1,比較f(aabb4a)與f[(a+b)a+b]的大小,并說明理由.
(3)當m=1時,設{an}為正項數(shù)列,且n≥2時[f′(an)•f′(an-1)+
an+an-1-1
a
2
n
a
2
n-1
]•an2=q,(其中q≥2010),an的前n項和為Sn,bn=
n
i=1
Si+1
SI
,若bn≥2011n恒成立,求q的最小值.

查看答案和解析>>

若函數(shù)f(x)=4+x2ln
1+x
1-x
在區(qū)間[-
1
2
1
2
]
上的最大值與最小值分別為M和m,則M+m=
 

查看答案和解析>>

若函數(shù)f(x)=logm(m-x)在區(qū)間[3,5]上的最大值與最小值的差為1,則實數(shù)m=

[  ]
A.

3-

B.

3+

C.

2-

D.

2+

查看答案和解析>>

一、選擇題

1.C       2.B      3.C       4.C       5.A      6.C

7.B       8.D      9.C       10.C     11.D     12.D

二、填空題

13.    14.3       15.     16.②

三、解答題

17.解:由,                 ---------------2分

=3,即,               ---------------8分

從而                       ----------------12分

18. 解:(1)∵f (x)=2sinxcos+cos x+a=sin x+cos x+a

=2sin(x+)+a,                                                            ……4分

∴函數(shù)f(x)的最小正周期T=2π.                                         ……6分

(Ⅱ)∵x∈[-],∴-x+.                         …….7分

∴當x+=-,即x=時, fmin(x)=f(-)=-+a;    ……9分

x+=,即x=時, fmax(x)=f()=2+a.               ……11分

由題意,有(-+a)+(2+a)=.

a=-1.                                                ……12分

 19.(本小題滿分12分)

(1)由題意得的最小正周期為                           -----------2分

                                        -------------4分 

是它的一個對稱中心,

                          ----------------------6分

               ------------------------7分

(2)因為,                        ------------------------8分

所以欲滿足條件,必須                          -------------------11分

                                           

即a的最大值為                                       -------------------12分

20. 解:(Ⅰ)當每輛車的月租金定為3600元時,未租出的車輛數(shù)為

所以這時租出了88輛車.                          -----------------------4分

 (Ⅱ)設每輛車的月租金定為x元,則租賃公司的月收益為

,                    -------------------------8分

整理得.

所以,當x=4100時,最大,最大值為,

即當每輛車的月租金定為4100元時,租賃公司的月收益最大,

最大月收益為304200元.                                    --------------------12分

21.解: (Ⅰ)∵為奇函數(shù),∴

                                          ----------------------1分

的最小值為

                                       -----------3分

又直線的斜率為

因此,                                ------------5分

,,.                             -------------6分

(Ⅱ)

   ,列表如下:

得分  評卷人

極大

極小

   所以函數(shù)的單調增區(qū)間是.      -----------9分

,

上的最大值是,最小值是.  ---------12分

22. 解:(1)是奇函數(shù),

       則恒成立                  ---------------------2分

      

          ------------------4分

   (2)又在[-1,1]上單調遞減,------6分

        ----------------------------------------------------8分

      

       令

       則                   ----------------------------12分

      

                                          -------------------------------14分

 

 

 

 

 

 

 

 


同步練習冊答案