解: 20解 查看更多

 

題目列表(包括答案和解析)

15.解:根據(jù)條件去畫滿足條件的二次函數(shù)圖象就可判斷出

某大型超市為促銷商品,特舉辦“購物搖獎100%中獎”活動,凡消費(fèi)者在該超市購物滿20元,享受一次搖獎機(jī)會,購物滿40元,享受兩次搖獎機(jī)會,依次類推。搖獎機(jī)的旋轉(zhuǎn)圓盤是均勻的,扇形區(qū)域A、B、C、D、E所對應(yīng)的圓心角的比值分別為1:2:3:4:5。相應(yīng)區(qū)域分別設(shè)立一、二、三、四、五等獎,獎金分別為5元、4元、3元、2元、1元。求某人購物30元,獲得獎金的分布列.

查看答案和解析>>

解:已知曲線C:x2+y2﹣4ax+2ay﹣20+20a=0.
(1)證明:不論a取何實(shí)數(shù),曲線C必過一定點(diǎn);
(2)當(dāng)a≠2時(shí),證明曲線C是一個(gè)圓,且圓心在一條直線上;
(3)若曲線C與x軸相切,求a的值

查看答案和解析>>

20世紀(jì)90年代,氣候變化專業(yè)委員會向政府提供的一項(xiàng)報(bào)告指出:全球氣候逐年變暖的一個(gè)重要因素是人類在能源利用與森林砍伐中使CO2體積分?jǐn)?shù)增加.據(jù)測,1990年、1991年、1992年大氣中的CO2體積分?jǐn)?shù)分別比1989年增加了1個(gè)可比單位、3個(gè)可比單位、6個(gè)可比單位.若用一個(gè)函數(shù)模擬20世紀(jì)90年代中每年CO2體積分?jǐn)?shù)增加的可比單位數(shù)y與年份增加數(shù)x(即當(dāng)年數(shù)與1989的差)的關(guān)系,模擬函數(shù)可選用二次函數(shù)f(x)=px2+qx+r(其中p,q,r為常數(shù))或函數(shù) g(x)=abx+c(其中a,b,c為常數(shù),且b>0,b≠1),
(1)根據(jù)題中的數(shù)據(jù),求f(x)和g(x)的解析式;
(2)如果1994年大氣中的CO2體積分?jǐn)?shù)比1989年增加了16個(gè)可比單位,請問用以上哪個(gè)函數(shù)作為模擬函數(shù)較好?并說明理由.

查看答案和解析>>

(20) (本題滿分14分)命題:不等式對一切恒成立;命題:不等式的解集為. 如果為真,為假,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

20世紀(jì)90年代,氣候變化專業(yè)委員會向政府提供的一項(xiàng)報(bào)告指出:全球氣候逐年變暖的一個(gè)重要因素是人類在能源利用與森林砍伐中使CO2體積分?jǐn)?shù)增加.據(jù)測,1990年、1991年、1992年大氣中的CO2體積分?jǐn)?shù)分別比1989年增加了1個(gè)可比單位、3個(gè)可比單位、6個(gè)可比單位.若用一個(gè)函數(shù)模擬20世紀(jì)90年代中每年CO2體積分?jǐn)?shù)增加的可比單位數(shù)y與年份增加數(shù)x(即當(dāng)年數(shù)與1989的差)的關(guān)系,模擬函數(shù)可選用二次函數(shù)f(x)=px2+qx+r(其中p,q,r為常數(shù))或函數(shù) g(x)=abx+c(其中a,b,c為常數(shù),且b>0,b≠1),
(1)根據(jù)題中的數(shù)據(jù),求f(x)和g(x)的解析式;
(2)如果1994年大氣中的CO2體積分?jǐn)?shù)比1989年增加了16個(gè)可比單位,請問用以上哪個(gè)函數(shù)作為模擬函數(shù)較好?并說明理由.

查看答案和解析>>

ABABD  DCAAD  AC

13. 2; 14.52; 15. ; 16 ,0    17. 或

18. 解:(Ⅰ) f’(x)=3x2+2mx-m2=(x+m)(3x-m)=0,則x=-m或x=m,

    當(dāng)x變化時(shí),f’(x)與f(x)的變化情況如下表:

x

(-∞,-m)

-m

(-m,)

(,+∞)

f’(x)

+

0

0

+

f (x)

 

極大值

 

極小值

 

從而可知,當(dāng)x=-m時(shí),函數(shù)f(x)取得極大值9,

即f(-m)=-m3+m3+m3+1=9,∴m=2.

(Ⅱ)由(Ⅰ)知,f(x)=x3+2x2-4x+1,

依題意知f’(x)=3x2+4x-4=-5,∴x=-1或x=-.

又f(-1)=6,f(-)=,

所以切線方程為y-6=-5(x+1),或y-=-5(x+),

即5x+y-1=0,或135x+27y-23=0.

19. 解:(1)由已知,,分別取,得,,,

所以數(shù)列的前5項(xiàng)是:,,,,;

(2)由(1)中的分析可以猜想.

下面用數(shù)學(xué)歸納法證明:

①當(dāng)時(shí),猜想顯然成立.

②假設(shè)當(dāng)時(shí)猜想成立,即.

那么由已知,得,

即.所以,

即,又由歸納假設(shè),得,

所以,即當(dāng)時(shí),公式也成立.

當(dāng)①和②知,對一切,都有成立.

20. 解: (Ⅰ)改進(jìn)工藝后,每件產(chǎn)品的銷售價(jià)為,月平均銷售量為件,則月平均利潤(元),

∴與的函數(shù)關(guān)系式為  .

(Ⅱ)由得,(舍),

當(dāng)時(shí);時(shí),

∴函數(shù) 在取得最大值.

故改進(jìn)工藝后,產(chǎn)品的銷售價(jià)為元時(shí),旅游部門銷售該紀(jì)念品的月平均利潤最大.

21. 解:(1)因?yàn)椋? 

       所以滿足條件

       又因?yàn)楫?dāng)時(shí),,所以方程有實(shí)數(shù)根0.

       所以函數(shù)是集合M中的元素.

     (2)假設(shè)方程存在兩個(gè)實(shí)數(shù)根),

       則,

    不妨設(shè),根據(jù)題意存在數(shù)

       使得等式成立

       因?yàn),所?/p>

       與已知矛盾,所以方程只有一個(gè)實(shí)數(shù)根.

22. 解:(Ⅰ),.∴直線的斜率為,且與函數(shù)的圖象的切點(diǎn)坐標(biāo)為.   ∴直線的方程為. 又∵直線與函數(shù)的圖象相切,

∴方程組有一解.  由上述方程消去,并整理得

         ①

依題意,方程①有兩個(gè)相等的實(shí)數(shù)根,

解之,得或       .

(Ⅱ)由(Ⅰ)可知, 

 .  .

∴當(dāng)時(shí),,當(dāng)時(shí),.

∴當(dāng)時(shí),取最大值,其最大值為2.

(Ⅲ) .

,  , .

由(Ⅱ)知當(dāng)時(shí),   ∴當(dāng)時(shí),,

.      ∴

 

 

 

 

 

 

 


同步練習(xí)冊答案