11.解(理)設..從而..所以.從而.故選A.(文)設為雙曲線的左右焦點.則...又由解得..所以.故選A. 查看更多

 

題目列表(包括答案和解析)

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

 

【解析】解法一:如圖,以點A為原點建立空間直角坐標系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得,于是,所以

(2) ,設平面PCD的法向量

,即.不防設,可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設點E的坐標為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設交點為F,連接BE,EF. 故或其補角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

如圖,在四棱錐中,⊥底面,底面為正方形,,分別是,的中點.

(I)求證:平面

(II)求證:;

(III)設PD=AD=a, 求三棱錐B-EFC的體積.

【解析】第一問利用線面平行的判定定理,,得到

第二問中,利用,所以

又因為,從而得

第三問中,借助于等體積法來求解三棱錐B-EFC的體積.

(Ⅰ)證明: 分別是的中點,    

,.       …4分

(Ⅱ)證明:四邊形為正方形,

,

, ,

,.    ………8分

(Ⅲ)解:連接AC,DB相交于O,連接OF, 則OF⊥面ABCD,

 

查看答案和解析>>

國家推行“節(jié)能減排,低碳經濟”政策后,環(huán)保節(jié)能的產品供不應求.為適應市場需求,某企業(yè)投入98萬元引進環(huán)保節(jié)能生產設備,并馬上投入生產.第一年需各種費用12萬元,從第二年開始,每年所需費用會比上一年增加4萬元.而每年因引入該設備可獲得年利潤為50萬元.請你根據以上數據,解決以下問題:
(1)引進該設備多少年后,該廠開始盈利?
(2)若干年后,因該設備老化,需處理老設備,引進新設備.該廠提出兩種處理方案:
第一種:年平均利潤達到最大值時,以26萬元的價格賣出.
第二種:盈利總額達到最大值時,以8萬元的價格賣出.
問哪種方案較為合算?

查看答案和解析>>

國家推行“節(jié)能減排,低碳經濟”政策后,環(huán)保節(jié)能的產品供不應求.為適應市場需求,某企業(yè)投入98萬元引進環(huán)保節(jié)能生產設備,并馬上投入生產.第一年需各種費用12萬元,從第二年開始,每年所需費用會比上一年增加4萬元.而每年因引入該設備可獲得年利潤為50萬元.請你根據以上數據,解決以下問題:
(1)引進該設備多少年后,該廠開始盈利?
(2)若干年后,因該設備老化,需處理老設備,引進新設備.該廠提出兩種處理方案:
第一種:年平均利潤達到最大值時,以26萬元的價格賣出.
第二種:盈利總額達到最大值時,以8萬元的價格賣出.
問哪種方案較為合算?

查看答案和解析>>

國家推行“節(jié)能減排,低碳經濟”政策后,環(huán)保節(jié)能的產品供不應求.為適應市場需求,某企業(yè)投入98萬元引進環(huán)保節(jié)能生產設備,并馬上投入生產.第一年需各種費用12萬元,從第二年開始,每年所需費用會比上一年增加4萬元.而每年因引入該設備可獲得年利潤為50萬元.請你根據以上數據,解決以下問題:
(1)引進該設備多少年后,該廠開始盈利?
(2)若干年后,因該設備老化,需處理老設備,引進新設備.該廠提出兩種處理方案:
第一種:年平均利潤達到最大值時,以26萬元的價格賣出.
第二種:盈利總額達到最大值時,以8萬元的價格賣出.
問哪種方案較為合算?

查看答案和解析>>


同步練習冊答案