解:∵是偶函數(shù).且定義域為.∴.對于恒成立.從而...對于恒成立.∴. 查看更多

 

題目列表(包括答案和解析)

定義域為R的函數(shù)f(x)滿足:對于任意的實數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且當(dāng)x>0時f(x)<0恒成立.
(1)判斷函數(shù)f(x)的奇偶性,并證明你的結(jié)論;
(2)證明f(x)為減函數(shù);若函數(shù)f(x)在[-3,3]上總有f(x)≤6成立,試確定f(1)應(yīng)滿足的條件;(3)解關(guān)于x的不等式,(n是一個給定的自然數(shù),a<0)

查看答案和解析>>

設(shè)定義域為R的函數(shù)f(x)滿足:對于任意的實數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且當(dāng)x>0時,f(x)<0恒成立.
(1)判斷f(x)的奇偶性及單調(diào)性,并對f(x)的奇偶性結(jié)論給出證明;
(2)若函數(shù)f(x)在[-3,3]上總有f(x)≤6成立,試確定f(1)應(yīng)滿足的條件;
(3)解x的不等式
1
n
f(x2)-f(x)>
1
n
f(ax)-f(a)
(n是一個給定的正整數(shù),a∈R).

查看答案和解析>>

設(shè)定義域為R的函數(shù)f(x)滿足:對于任意的實數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且當(dāng)x>0時,f(x)<0恒成立.
(1)判斷f(x)的奇偶性及單調(diào)性,并對f(x)的奇偶性結(jié)論給出證明;
(2)若函數(shù)f(x)在[-3,3]上總有f(x)≤6成立,試確定f(1)應(yīng)滿足的條件;
(3)解x的不等式
1
n
f(x2)-f(x)>
1
n
f(ax)-f(a)
(n是一個給定的正整數(shù),a∈R).

查看答案和解析>>

設(shè)函數(shù)y=f(x)(x∈R且x≠0)對定義域內(nèi)任意的x1,x2恒有f(x1•x2)=f(x1)+f(x2
(1)求證:f(1)=f(-1)=0;
(2)求證:y=f(x)是偶函數(shù);
(3)若f(x)為(0,+∞)上的增函數(shù),解不等式f(x)+f(x-
12
)≤0

查看答案和解析>>

設(shè)函數(shù)y=f(x)(x∈R且x≠0)對定義域內(nèi)任意的x1,x2恒有f(x1•x2)=f(x1)+f(x2
(1)求證:f(1)=f(-1)=0;
(2)求證:y=f(x)是偶函數(shù);
(3)若f(x)為(0,+∞)上的增函數(shù),解不等式數(shù)學(xué)公式

查看答案和解析>>


同步練習(xí)冊答案