函數(shù)在其定義域上單調(diào)遞減.且值域?yàn)?則它的反函數(shù)的值域是 . 查看更多

 

題目列表(包括答案和解析)

函數(shù)f(x)=log3x2在其定義域上單調(diào)遞減,且值域?yàn)閇2,4],則它的反函數(shù)的值域是_____________.

查看答案和解析>>

函數(shù)f(x)=log3x2在其定義域上單調(diào)遞減,且值域?yàn)閇2,4],則它的反函數(shù)的值域是_____________.

查看答案和解析>>

已知函數(shù)f(x)的定義域D,且f(x)同時滿足以下條件:

f(x)在D上單調(diào)遞增或單調(diào)遞減;

②存在區(qū)間[a,b]D(其中ab,使得f(x)在區(qū)間[a,b]的值域是[a,b],那么我們把函數(shù)f(x)(xD)叫做閉函數(shù).

(1)求閉函數(shù)y=-x3符合條件②的區(qū)間[ab];

(2)判斷函數(shù)y=2x-lgx是不是閉函數(shù),若是,請說明理由,并找出區(qū)間[a,b];若不是,請說明理由;

(3)若yk是閉函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

3、已知y=f(x)在定義域[1,3]上為單調(diào)減函數(shù),值域?yàn)閇4,7],若它存在反函數(shù),則反函數(shù)在其定義域上(  )

查看答案和解析>>

已知y=f(x)在定義域[1,3]上為單調(diào)減函數(shù),值域?yàn)閇4,7],若它存在反函數(shù),則反函數(shù)在其定義域上( 。
A.單調(diào)遞減且最大值為7B.單調(diào)遞增且最大值為7
C.單調(diào)遞減且最大值為3D.單調(diào)遞增且最大值為3

查看答案和解析>>

一、選擇題:

題號

1

2

3

4

5

6

7

8

9

10

答案

D

B

B

D

A

B

C

D

C

a

二 填空題:

11:f-1(x)=lnx-1 (x>0).      12:-30

 

13:                      14:1

 

15:①②④;

 

三、解答題

16.………………………………………………… 2分

⑴當(dāng)時,,………………………………… 3分

,…………………………………… 5分

      ∴={x│3≤x≤5}………………………………………… 7分

⑵∵,,

    ∴有,解得,……………………………  10分

此時,符合題意.………………………… 12分

17.解:⑴∴=(sinα,1)共線      

  ∴sinα+cosα=………………………………… 2分

故sin2α=-

從而(sinα-cosα)2=1-sin2α=……………………… 4分

∴α∈(-)∴sinα<0,cosα>0

∴sinα-cosα=-……………………………………………6分

⑵∵=2cos2α=1+cos2α…9分

又cos2α=cos2α-sin2α=(cosα+sinα)(cosα-sinα)=

∴原式=1+…………………………………………………… 12分

18. 解:⑴

     ....................................2分

也滿足上式,

     

數(shù)列是公比為2,首項(xiàng)為的等比數(shù)列...........4分

...........................6分

 

  .................9分

于是...................12分

19.⑴設(shè)

    …………………………2分

                                     …………4分

    ⑵由⑴,得

                    

                          …………6分

(i)當(dāng)

                          …………8分

(ii)

                        …………10分

(iii)當(dāng)

                            …………12分

綜上所述,   ………………………………13分

20.解:⑴令 ………………………… 1分

……………………………………… 2分

當(dāng)-2<x≤0時 g’x)≤0;當(dāng)x>0時,g(x)>0…………………… 3分

∴g(x)在(-2,0上遞減,在(0,+∞)上遞增……………………… 4分

則x=0時  g(x)min=g(0)=0   g(x)≥g(x)min=0   ………………… 5分

 即fn(x)≥nx                                    ……………… 6分

⑵∵         即…………… 7分

           易得x0>0 …………………………… 9分   

由⑴知x>0時(1+x)n>1+nx  故2n+1=(1+1)n+1>n+2    ∴x0<1… 12分

綜上0<x0<1                       ……………………………… 13分

21.解:⑴由已知,當(dāng)n=1時,a,∵a1>0,∴a1=1. ………… 1分

當(dāng)n≥2時,…+     ①

             …+        ②

由①―②得,a……………………………………………3分

∵an>0, ∴a=2Sn-1+an,即a=2Sn-an

當(dāng)n=1時,∴a1=1適合上式,

∴a………………………………………………………5分

⑵由⑴知,a,即a=2Sn-an(n∈)③

當(dāng)n≥2時,a=2Sn-1-an-1             ④

由③―④得,

a=2(Sn-Sn-1)-an+an-1=2an-an+an-1=an+an-1……………………………7分

∵an+an-1>0,∴an-an-1=1,數(shù)列{an}是等差數(shù)列,首項(xiàng)為1,公差為1,

可得an=n. …………………………………………………………………9分

(3)∵an=n,∴bn=3n+(-1)n-1λ?=3n+(-1)n-1λ?2n, …………………10分

要使bn+1> bn恒成立,

bn+1-bn=3n+1+(-1)nλ?2n+1-[3n+(-1)n-1λ?2n]

        =2?3n-3λ(-1)n-1?2n>0恒成立

則(-1)n-1?λ<()n-1恒成立…………………………………………11分

當(dāng)n為奇數(shù)時,即為λ<()n-1恒成立

又()n-1的最小值為1,       ∴λ<1

當(dāng)n為偶數(shù)時,即為λ>-()n-1恒成立

又-()n-1最大值為-         ∴λ>-……………………………12分

∴-<λ<1,又λ≠0,∴λ=-1    ∴λ=-1,使得對任意n∈,都有bn+1>bn……………13分

 

 

 


同步練習(xí)冊答案