所以 點(diǎn)即(1.2)在的圖象上.所以 查看更多

 

題目列表(包括答案和解析)

把函數(shù)的圖象按向量平移得到函數(shù)的圖象. 

(1)求函數(shù)的解析式; (2)若,證明:.

【解析】本試題主要考查了函數(shù) 平抑變換和運(yùn)用函數(shù)思想證明不等式。第一問中,利用設(shè)上任意一點(diǎn)為(x,y)則平移前對(duì)應(yīng)點(diǎn)是(x+1,y-2)代入 ,便可以得到結(jié)論。第二問中,令,然后求導(dǎo),利用最小值大于零得到。

(1)解:設(shè)上任意一點(diǎn)為(x,y)則平移前對(duì)應(yīng)點(diǎn)是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分

(2) 證明:令,……6分

……8分

,∴,∴上單調(diào)遞增.……10分

,即

 

查看答案和解析>>

已知函數(shù)

(1)若函數(shù)的圖象經(jīng)過P(3,4)點(diǎn),求a的值;

(2)比較大小,并寫出比較過程;

(3)若,求a的值.

【解析】本試題主要考查了指數(shù)函數(shù)的性質(zhì)的運(yùn)用。第一問中,因?yàn)楹瘮?shù)的圖象經(jīng)過P(3,4)點(diǎn),所以,解得,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159225008161918_ST.files/image007.png">,所以.

(2)問中,對(duì)底數(shù)a進(jìn)行分類討論,利用單調(diào)性求解得到。

(3)中,由知,.,指對(duì)數(shù)互化得到,,所以,解得所以, 或 .

解:⑴∵函數(shù)的圖象經(jīng)過,即.        … 2分

,所以.             ………… 4分

⑵當(dāng)時(shí),;

當(dāng)時(shí),. ……………… 6分

因?yàn)椋?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159225008161918_ST.files/image021.png">,

當(dāng)時(shí),上為增函數(shù),∵,∴.

.當(dāng)時(shí),上為減函數(shù),

,∴.即.      …………………… 8分

⑶由知,.所以,(或).

.∴,       … 10分

 或 ,所以, 或 .

 

查看答案和解析>>

若整數(shù)m滿足不等式,則稱m為x的“親密整數(shù)”,記作{x},即{x}=m,已知函數(shù)f(x)x-{x}.給出以下四個(gè)命題:
①函數(shù)y=f(x),x∈R是周期函數(shù)且其最小正周期為1;
②函數(shù)y=f(x),x∈R的圖象關(guān)于點(diǎn)(k,0),k∈Z中心對(duì)稱;
③函數(shù)y=f(x),x∈R在上單調(diào)遞增;
④方程在[-2,2]上共有7個(gè)不相等的實(shí)數(shù)根.
其中正確命題的序號(hào)是    .(寫出所有正確命題的序號(hào)).

查看答案和解析>>

若整數(shù)m滿足不等式數(shù)學(xué)公式,則稱m為x的“親密整數(shù)”,記作{x},即{x}=m,已知函數(shù)f(x)x-{x}.給出以下四個(gè)命題:
①函數(shù)y=f(x),x∈R是周期函數(shù)且其最小正周期為1;
②函數(shù)y=f(x),x∈R的圖象關(guān)于點(diǎn)(k,0),k∈Z中心對(duì)稱;
③函數(shù)y=f(x),x∈R在數(shù)學(xué)公式上單調(diào)遞增;
④方程數(shù)學(xué)公式在[-2,2]上共有7個(gè)不相等的實(shí)數(shù)根.
其中正確命題的序號(hào)是________.(寫出所有正確命題的序號(hào)).

查看答案和解析>>

若整數(shù)m滿足不等式x-
1
2
≤m<x+
1
2
,x∈R
,則稱m為x的“親密整數(shù)”,記作{x},即{x}=m,已知函數(shù)f(x)x-{x}.給出以下四個(gè)命題:
①函數(shù)y=f(x),x∈R是周期函數(shù)且其最小正周期為1;
②函數(shù)y=f(x),x∈R的圖象關(guān)于點(diǎn)(k,0),k∈Z中心對(duì)稱;
③函數(shù)y=f(x),x∈R在[-
1
2
,
1
2
]
上單調(diào)遞增;
④方程f(x)=
1
2
sin(π•x)
在[-2,2]上共有7個(gè)不相等的實(shí)數(shù)根.
其中正確命題的序號(hào)是
①④
①④
.(寫出所有正確命題的序號(hào)).

查看答案和解析>>


同步練習(xí)冊(cè)答案