題目列表(包括答案和解析)
A. B. C. D.
設(shè)是定義在上的奇函數(shù),且當(dāng)時,.
(Ⅰ) 求時,的表達(dá)式;
(Ⅱ) 令,問是否存在,使得在x = x0處的切線互相平行?若存在,請求出值;若不存在,請說明理由.
設(shè)是定義在上的奇函數(shù),且當(dāng)時,,若對任意的,不等式恒成立,則實(shí)數(shù)的取值范圍是( )
A.B. C.D.
設(shè)是定義在上的奇函數(shù),且當(dāng)時,,若對任意,不等式恒成立,則實(shí)數(shù)的取值范圍是 .
設(shè)是定義在上的奇函數(shù),且當(dāng)時,,若對任意的,不等式恒成立,則實(shí)數(shù)的取值范圍是( )
A. B.
C. D.
1.B 2.A 3.C 4.B 5.A 6.D 7.B 8.C 9.C 1 0.B
11.B 12.D
1..
2.
3.是方程的根,或8,又,
.
4..
5.畫出可行域,如圖,可看為區(qū)域內(nèi)的點(diǎn)與(0,0)連線的斜率,.
.
6.
7.在中,,在中,,
在中,,在中,,.
8.的圖象如圖所示
的解集為.
9.由知點(diǎn)的軌跡是以,為焦點(diǎn)的雙曲線一支.,.
10.由獨(dú)立重復(fù)試驗(yàn)的概率.
11.設(shè),圓為最長弦為直徑,最短弦的中點(diǎn)為,
12.幾何體的表面積是三個圓心角為、半徑為1的扇形面積與半徑為1的球面積的之和,即表面積為.
二、
13.平方得
.
14.的系數(shù)
15.1.與互為反函數(shù),
令,
.
16.0或 ,設(shè)點(diǎn)的橫坐標(biāo)為點(diǎn)處的切線斜率為,由夾角公式得,即
若,得,矛盾
若
或.
三、
17.(1),由,得,消去得
.
.
(2)
,
.
時,的最大值為時,的最大值為2.
18.(1)從3種服裝商品、2種家電商品,4種日用商品中,選出3種商品,一共有種不同的選法.選出的3種商品中,沒有日用商品的選法有種。所以選出的3種商品至少有一種日用商品的概率為.
(2)假設(shè)商場將中獎獎金數(shù)額定為元,則顧客在三歡抽獎中所獲得的獎金總額是一個隨機(jī)變量,其所有可能的取值為
于是顧客在三次抽獎中所獲得的獎金總額的期望值是
.
要使促銷方案對商場有利,因此應(yīng)有,.
故商場應(yīng)將中獎獎金數(shù)額最高定為120元.才能使促銷方案對自己有利.
19.(1)證明:.
連接.
,又
即 平面.
(2)方法1 取的中點(diǎn),的中點(diǎn),為的中點(diǎn),或其補(bǔ)角是與所成的角.
∴連接是斜邊上的中線,,
.
在中,由余弦定理得,
∴直線與所成的角為.
(3)方法l
平面,過作于,連接,
是在平面上的射影,由三垂線定理得.
是二面角的平面角,
,又.
在中,,.
∴二面角為.
(2)方法2
建立空間直角坐標(biāo)系.
則
.
.
∴直線與所成的角為.
(3)方法2
在坐標(biāo)系中,平面的法向量.
設(shè)平面的法向量,則,
求得,
∴二面角為.
20.是首項(xiàng)為、公比為的等比數(shù)列,
(1)當(dāng)時,
兩式相減得
.
(2)
當(dāng)時,,,對,,而,
時,成立,即.
當(dāng)時,.
對遞增,時,
時,對成立,即,
綜上得,的取值范圍是.
21.(1)設(shè).
由拋物線定義,,
.
在上,,又
或舍去.
∴橢圓的方程為.
(2)∵直線的方程為為菱形,
,設(shè)直線的方程為
、在橢圓上,
.
設(shè),則.
.
的中點(diǎn)坐標(biāo)為,由為菱形可知,點(diǎn)在直線上,
∴直線的方程為,即.
22.(1),切線的議程為,即.
令得,令得,
,
.
(2)由及得,即.
于是
當(dāng)且僅當(dāng),即時,等號成立.
時,時,.
(3)
由得
當(dāng),即時,,
當(dāng),即時,
時,取得最小值,最小值為.
由,得,此時,最小值為.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com