18.某商場準備在五一勞動節(jié)期間舉行促銷活動.根據(jù)市場調(diào)查.該商場決定從3種服裝商品.2種家電商品.4種日用商品中.選出3種商品進行促銷活動.(1)試求選出的3種商品至少有一種日用商品的概率, 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

某商場準備在國慶節(jié)期間舉行促銷活動,根據(jù)市場調(diào)查,該商場決定從種服裝商品, 種家電商品, 種日用商品中,選出種商品進行促銷活動.

(Ⅰ)試求選出的種商品中至多有一種是家電商品的概率;

(Ⅱ)商場對選出的某商品采用的促銷方案是有獎銷售,即在該商品現(xiàn)價的基礎(chǔ)上將價格提高元,同時,若顧客購買該商品,則允許有次抽獎的機會,若中獎,則每次中獎都獲得數(shù)額為元的獎券.假設(shè)顧客每次抽獎時獲獎的概率都是,若使促銷方案對商場有利,則最少為多少元?

 

查看答案和解析>>

(本小題滿分12分)
某商場準備在國慶節(jié)期間舉行促銷活動,根據(jù)市場調(diào)查,該商場決定從種服裝商品, 種家電商品, 種日用商品中,選出種商品進行促銷活動.
(Ⅰ)試求選出的種商品中至多有一種是家電商品的概率;
(Ⅱ)商場對選出的某商品采用的促銷方案是有獎銷售,即在該商品現(xiàn)價的基礎(chǔ)上將價格提高元,同時,若顧客購買該商品,則允許有次抽獎的機會,若中獎,則每次中獎都獲得數(shù)額為元的獎券.假設(shè)顧客每次抽獎時獲獎的概率都是,若使促銷方案對商場有利,則最少為多少元?

查看答案和解析>>

(本小題滿分12分) 
某商場準備在五一勞動節(jié)期間舉行促銷活動,根據(jù)市場調(diào)查,該商場決定從2種服裝商品、3種家電商品、5種日用商品中,選出3種商品進行促銷活動。
(I)試求選出的3種商品中至少有一種是日用商品的概率;
(II)商場對選出的A商品采用的促銷方案是有獎銷售,即在該商品現(xiàn)價的基礎(chǔ)上將價格提高120元,同時允許顧客有3 次抽獎的機會,若中獎,則每次中獎都可獲得60元獎金,假設(shè)顧客每次抽獎時獲獎與否是等可能的。試求某位顧客所中獎金數(shù)不低于商場提價數(shù)的概率。

查看答案和解析>>

(本小題滿分12分) 

某商場準備在五一勞動節(jié)期間舉行促銷活動,根據(jù)市場調(diào)查,該商場決定從2種服裝商品、3種家電商品、5種日用商品中,選出3種商品進行促銷活動。

(I)試求選出的3種商品中至少有一種是日用商品的概率;

(II)商場對選出的A商品采用的促銷方案是有獎銷售,即在該商品現(xiàn)價的基礎(chǔ)上將價格提高120元,同時允許顧客有3 次抽獎的機會,若中獎,則每次中獎都可獲得60元獎金,假設(shè)顧客每次抽獎時獲獎與否是等可能的。試求某位顧客所中獎金數(shù)不低于商場提價數(shù)的概率。

 

查看答案和解析>>

1.B       2.A      3.C      4.B       5.A      6.D      7.B       8.C      9.C      1 0.B

11.B     12.D

1.

2.

3.是方程的根,或8,又,

      

4.

5.畫出可行域,如圖,可看為區(qū)域內(nèi)的點與(0,0)連線的斜率,

      

6.

7.在中,,在中,,

中,,在中,,

8.的圖象如圖所示

       的解集為

9.由點的軌跡是以,為焦點的雙曲線一支.,

10.由獨立重復(fù)試驗的概率

11.設(shè),圓為最長弦為直徑,最短弦的中點為

12.幾何體的表面積是三個圓心角為、半徑為1的扇形面積與半徑為1的球面積的之和,即表面積為

二、

13.平方得

      

14.的系數(shù)

15.1.互為反函數(shù),

       令,

      

16.0或       ,設(shè)點的橫坐標為點處的切線斜率為,由夾角公式得,即

,得,矛盾

三、

17.(1),由,得,消去

             

             

(2)

      

      

      

       時,的最大值為時,的最大值為2.

18.(1)從3種服裝商品、2種家電商品,4種日用商品中,選出3種商品,一共有種不同的選法.選出的3種商品中,沒有日用商品的選法有種。所以選出的3種商品至少有一種日用商品的概率為

(2)假設(shè)商場將中獎獎金數(shù)額定為元,則顧客在三歡抽獎中所獲得的獎金總額是一個隨機變量,其所有可能的取值為

      

      

      

      

于是顧客在三次抽獎中所獲得的獎金總額的期望值是

要使促銷方案對商場有利,因此應(yīng)有,

故商場應(yīng)將中獎獎金數(shù)額最高定為120元.才能使促銷方案對自己有利.

19.(1)證明:

連接

,又

              即        平面

(2)方法1  取的中點,的中點,的中點,或其補角是所成的角.

           ∴連接斜邊上的中線,,

             

              在中,由余弦定理得

           ∴直線所成的角為

(3)方法l

       平面,過,連接,

              在平面上的射影,由三垂線定理得

              是二面角的平面角,

              ,又

中,,

∴二面角

(2)方法2

建立空間直角坐標系

∴直線所成的角為

(3)方法2

在坐標系中,平面的法向量

設(shè)平面的法向量,則,

求得,

∴二面角

20.是首項為、公比為的等比數(shù)列,

      

(1)當時,

      

      

      

       兩式相減得

      

      

(2)

時,,對,而,

時,成立,即

時,

遞增,時,

時,成立,即,

綜上得,的取值范圍是

21.(1)設(shè)

由拋物線定義,,

上,,又

         舍去.

∴橢圓的方程為

       (2)∵直線的方程為為菱形,

              ,設(shè)直線的方程為

              、在橢圓上,

             

              設(shè),則

             

的中點坐標為,由為菱形可知,點在直線上,

           ∴直線的方程為,即

22.(1),切線的議程為,即.

              令,令

              ,

             

             

       (2)由,即

              于是

              當且僅當,即時,等號成立.

              時,時,

       (3)

              由

              當,即時,,

              當,即時,

              時,取得最小值,最小值為

              由,得,此時,最小值為

 

 

 


同步練習(xí)冊答案