題目列表(包括答案和解析)
10-x |
10+x |
10-x |
10+x |
10-x |
10+x |
10-x |
10+x |
某港口海水的深度(米)是時間(時)()的函數(shù),記為:
已知某日海水深度的數(shù)據(jù)如下:
(時) |
0 |
3 |
6 |
9 |
12 |
15 |
18 |
21 |
24 |
(米) |
10.0 |
13.0 |
9.9 |
7.0 |
10.0 |
13.0 |
10.1 |
7.0 |
10.0 |
經(jīng)長期觀察,的曲線可近似地看成函數(shù)的圖象
(I)試根據(jù)以上數(shù)據(jù),求出函數(shù)的振幅、最小正周期和表達(dá)式;
(II)一般情況下,船舶航行時,船底離海底的距離為米或米以上時認(rèn)為是安全的(船舶?繒r,船底只需不碰海底即可)。某船吃水深度(船底離水面的距離)為米,如果該船希望在同一天內(nèi)安全進(jìn)出港,請問,它至多能在港內(nèi)停留多長時間(忽略進(jìn)出港所需時間)
【解析】第一問中利用三角函數(shù)的最小正周期為: T=12 振幅:A=3,b=10,
第二問中,該船安全進(jìn)出港,需滿足:即: ∴又 ,可解得結(jié)論為或得到。
規(guī)格類型 鋼板類型 | A | B |
甲 | 2 | 1 |
乙 | 1 | 3 |
已知庫房中現(xiàn)有甲、乙兩種鋼板的數(shù)量分別為5張和10張,市場急需A、B兩種規(guī)格的成品數(shù)分別為15塊和27塊.
(1)問各截這兩種鋼板多少張可得到所需的成品數(shù),且使所用的兩張鋼板的總張數(shù)最少?
(2)有5個同學(xué)對線性規(guī)劃知識了解不多,但是畫出了可行域,他們每個人都在可行域的整點中隨意取出一解,求恰好有2個人取到最優(yōu)解的概率.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com