在中.已知.則的最大值為 .此時(shí)角大小為 .(二)選做題(14-15題.考生只能從中選做一題) 查看更多

 

題目列表(包括答案和解析)

在△ABC中,已知tanA=3tanB,則tan(A-B)的最大值為
 
,此時(shí)角A的大小為
 

查看答案和解析>>

已知圓C過(guò)定點(diǎn)A(0,a)(a>0),且在x軸上截得的弦MN的長(zhǎng)為2a.
(1)求圓C的圓心的軌跡方程;
(2)設(shè)|AM|=m,|AN|=n,求
m
n
+
n
m
的最大值及此時(shí)圓C的方程.△ABC中,a,b,c是內(nèi)角A,B,C的對(duì)邊,且lgsinA,lgsinB,lgsinC成等差數(shù)列,則下列兩條直線l1:(sin2A)x+(sinA)y-a=0,l2:(sin2B)x+(sinC)y-c=0的位置關(guān)系是(  )

查看答案和解析>>

已知函數(shù)f(x)=數(shù)學(xué)公式(t為常數(shù)).
(1)當(dāng)t=1時(shí),在圖中的直角坐標(biāo)系內(nèi)作出函數(shù)y=f(x)的大致圖象,并指出該函數(shù)所具備的基本性質(zhì)中的兩個(gè)(只需寫(xiě)兩個(gè)).
(2)設(shè)an=f(n)(n∈N*),當(dāng)t>10,且t∉N*時(shí),試判斷數(shù)列{an}的單調(diào)性并由此寫(xiě)出該數(shù)列中最大項(xiàng)和最小項(xiàng)(可用[t]來(lái)表示不超過(guò)t的最大整數(shù)).
(3)利用函數(shù)y=f(x)構(gòu)造一個(gè)數(shù)列{xn},方法如下:對(duì)于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述構(gòu)造過(guò)程中,若xi(i∈N*)在定義域中,則構(gòu)造數(shù)列的過(guò)程繼續(xù)下去;若xi不在定義域中,則構(gòu)造數(shù)列的過(guò)程停止.若可用上述方法構(gòu)造出一個(gè)常數(shù)列{xn},求t的取值范圍.

查看答案和解析>>

已知函數(shù)f(x)=數(shù)學(xué)公式(t為常數(shù)).
(1)當(dāng)t=1時(shí),在圖中的直角坐標(biāo)系內(nèi)作出函數(shù)y=f(x)的大致圖象,并指出該函數(shù)所具備的基本性質(zhì)中的兩個(gè)(只需寫(xiě)兩個(gè)).
(2)設(shè)an=f(n)(n∈N*),當(dāng)t>10,且t∉N*時(shí),試判斷數(shù)列{an}的單調(diào)性并由此寫(xiě)出該數(shù)列中最大項(xiàng)和最小項(xiàng)(可用[t]來(lái)表示不超過(guò)t的最大整數(shù)).
(3)利用函數(shù)y=f(x)構(gòu)造一個(gè)數(shù)列{xn},方法如下:對(duì)于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述構(gòu)造過(guò)程中,若xi(i∈N*)在定義域中,則構(gòu)造數(shù)列的過(guò)程繼續(xù)下去;若xi不在定義域中,則構(gòu)造數(shù)列的過(guò)程停止.若取定義域中的任一值作為x1,都可以用上述方法構(gòu)造出一個(gè)無(wú)窮數(shù)列{xn},求實(shí)數(shù)t的值.

查看答案和解析>>

已知圓C過(guò)定點(diǎn)A(0,a)(a>0),且在x軸上截得的弦MN的長(zhǎng)為2a.
(1)求圓C的圓心的軌跡方程;
(2)設(shè)|AM|=m,|AN|=n,求
m
n
+
n
m
的最大值及此時(shí)圓C的方程.△ABC中,a,b,c是內(nèi)角A,B,C的對(duì)邊,且lgsinA,lgsinB,lgsinC成等差數(shù)列,則下列兩條直線l1:(sin2A)x+(sinA)y-a=0,l2:(sin2B)x+(sinC)y-c=0的位置關(guān)系是( 。
A.、重合B.相交(不垂直)C.垂直D.平行

查看答案和解析>>


同步練習(xí)冊(cè)答案