(2)設(shè).求數(shù)列{bn}的前n項(xiàng)和. 查看更多

 

題目列表(包括答案和解析)

設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn,且bn=2-2Sn;數(shù)列{an}為等差數(shù)列,且a5=14,a7=20.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)若cn=an•bn,n=1,2,3,…,Tn為數(shù)列{cn}的前n項(xiàng)和.求證:Tn
72

查看答案和解析>>

設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn,且bn=2-2Sn;數(shù)列{an}為等差數(shù)列,且a5=14,a7=20.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)若cn=an•bn(n=1,2,3…),Tn為數(shù)列{cn}的前n項(xiàng)和.求Tn

查看答案和解析>>

設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn,且bn=2-Sn;數(shù)列{an}為等差數(shù)列,且a5=9,a7=13.
(1)求證:數(shù)列{bn}是等比數(shù)列,并求{bn}通項(xiàng)公式;
(2)若cn=bnan(n=1,2,3,…),Tn為數(shù)列{cn}的前n項(xiàng)和,求Tn

查看答案和解析>>

設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn,對(duì)任意的n∈N*,都有bn>0,且Sn2=b13+b23+…bn3;數(shù)列{an}滿(mǎn)足a1=1,an+1=(1+cos2
bnπ
2
)an+sin2
bnπ
2
,n∈N*
(Ⅰ)求b1,b2的值及數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)求證:
a2
a1
+
a4
a3
+
a6
a5
…+
a2n
a2n-1
<n+
19
12
對(duì)一切n∈N+成立.

查看答案和解析>>

設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn,且bn=2﹣2Sn;數(shù)列{an}為等差數(shù)列,且a5=14,a7=20.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)若cn=an·bn(n=1,2,3…),Tn為數(shù)列{cn}的前n項(xiàng)和.求Tn

查看答案和解析>>


同步練習(xí)冊(cè)答案