② 直線平面平面, 查看更多

 

題目列表(包括答案和解析)

平面直角坐標(biāo)系xOy中,已知⊙M經(jīng)過(guò)點(diǎn)F1(0,-c),F(xiàn)2(0,c),A(
3
c,0)三點(diǎn),其中c>0.
(1)求⊙M的標(biāo)準(zhǔn)方程(用含c的式子表示);
(2)已知橢圓
y2
a2
+
x2
b2
=1(a>b>0)
(其中a2-b2=c2)的左、右頂點(diǎn)分別為D、B,⊙M與x軸的兩個(gè)交點(diǎn)分別為A、C,且A點(diǎn)在B點(diǎn)右側(cè),C點(diǎn)在D點(diǎn)右側(cè).
①求橢圓離心率的取值范圍;
②若A、B、M、O、C、D(O為坐標(biāo)原點(diǎn))依次均勻分布在x軸上,問(wèn)直線MF1與直線DF2的交點(diǎn)是否在一條定直線上?若是,請(qǐng)求出這條定直線的方程;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),給定兩點(diǎn)A(1,0),B(0,-2),點(diǎn)C滿足
OC
OA
OB
,其中α,β∈R,且α-2β=1.
(Ⅰ)求點(diǎn)C的軌跡方程;
(Ⅱ)設(shè)點(diǎn)C的軌跡與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
交于兩點(diǎn)M,N,且以MN為直徑的圓過(guò)原點(diǎn),求證:
1
a2
-
1
b2
為定值.

查看答案和解析>>

平面直角坐標(biāo)系x0y中,動(dòng)點(diǎn)P到直線x=-2的距離比它到點(diǎn)F(1,0)的距離大1.
(1)求動(dòng)點(diǎn)P的軌跡C;
(2)求曲線C與直線x=4所圍成的區(qū)域的面積.

查看答案和解析>>

平面內(nèi)有向量
OA
=(1,7),
OB
=(5,1),
OP
=(2,1),點(diǎn)X為直線OP上的一個(gè)動(dòng)點(diǎn).
(1)當(dāng)
XA
XB
取最小值時(shí),求
OX
的坐標(biāo);
(2)當(dāng)點(diǎn)X滿足(1)的條件和結(jié)論時(shí),求cos∠AXB的值.

查看答案和解析>>

平面直角坐標(biāo)系xOy中,已知以O(shè)為圓心的圓與直線l:y=mx+(3-4m)恒有公共點(diǎn),且要求使圓O的面積最。
(1)寫出圓O的方程;
(2)圓O與x軸相交于A、B兩點(diǎn),圓內(nèi)動(dòng)點(diǎn)P使|
PA
|
|
PO
|
、|
PB
|
成等比數(shù)列,求
PA
PB
的范圍.

查看答案和解析>>

1.C      2.C      3.B       4.A      5.C      6.C      7.D      8.C      9.D      10.B

1l.B      12.A

2.解析:

       ,∴選C.

3.解析:是增函數(shù) 

       故,即

       又

       ,故選B.

4.解析:如圖作出可行域,作直線,平移直線位置,使其經(jīng)過(guò)點(diǎn).此時(shí)目標(biāo)函數(shù)取得最大值(注意反號(hào))

       ,故選A

5.解析:設(shè)有人投中為事件,則

       故選C.

6.解析:展開式中通項(xiàng);

      

       由,得,故選C.

7.解析:

       由

,故選D.

8.略

9.解析:由得準(zhǔn)線方程,雙曲線準(zhǔn)線方程為

       ,解得,

       ,故選D.

10.解析:設(shè)正四面體的棱長(zhǎng)為2,取中點(diǎn)為,連接,則所成的角,在

,故選B.

11.解析:

由題意,則,故選B.

12.解析:由已知,

       為球的直么

       ,又

       設(shè),則

      

      

       又由,解得

       ,故選A.

另法:將四面體置于正方休中.

       正方體的對(duì)角線長(zhǎng)為球的直徑,由此得,然后可得

二、填空題

13.3;解析:上的投影是

14.(0.2);解析:由,解得

15.

解析:

      

       由余弦定理為鈍角

       ,即

       解得

16.②③;

解析:容易知命題①是錯(cuò)的,命題②、③都是對(duì)的,對(duì)于命題④我們考查如圖所示的正方體,政棱長(zhǎng)為,顯然為平面內(nèi)兩條距離為的平行直線,它們?cè)诘酌?sub>內(nèi)的射影、仍為兩條距離為的平行直線.但兩平面卻是相交的.

三、

17.解:(1)

              ,

,故

       (2)

              由

設(shè)邊上的高為。則

18.(1)設(shè)甲、乙兩人同時(shí)參加災(zāi)區(qū)服務(wù)為事件,則

(2)記甲、乙兩人同時(shí)參加同一災(zāi)區(qū)服務(wù)為事件,那么

19.解:

      

(1)平面

           ∵二面角為直二面角,且

              平面              平面

(2)(法一)連接交于點(diǎn),連接是邊長(zhǎng)為2的正方形,                   ,

平面,由三垂線定理逆定理得

是二面角的平面角

由(1)平面,

中,

∴在中,

故二面角等于

(2)(法二)利用向量法,如圖以之中點(diǎn)為坐標(biāo)原點(diǎn)建立空間坐標(biāo)系,則

             

             

              ,

              設(shè)平面的法向量分別為,則由

              ,而平面的一個(gè)法向理

             

              故所求二面角等于

20.解:(1)由題設(shè),即

              易知是首項(xiàng)為,公差為2的等差數(shù)列,

           ∴通項(xiàng)公式為,

    (2)由題設(shè),,得是以公比為的等比數(shù)列.

       

        由

 

21.解:(1)由題意,由拋物線定義可求得曲線的方程為

(2)證明:設(shè)點(diǎn)、的坐標(biāo)分別為

             若直線有斜率時(shí),其坐標(biāo)滿足下列方程組:

              ,        

              若沒有斜率時(shí),方程為

              又

             

              ;又,

                         

22.(1)解:方程可化為

當(dāng)時(shí),,又,于是,解得,故

       (2)解:設(shè)為曲線上任一點(diǎn),由知曲線在點(diǎn)處的切線方程為,即

              令,得,從而得切線與直線的交點(diǎn)坐標(biāo)為

,得,從而得切線與直線的交點(diǎn)坐標(biāo)為.所以點(diǎn)處的切線與直線所圍成的三角形面積為.故曲線上任一點(diǎn)處的切線與直線所圍成的三角形的面積為定值,此定值為6.

 

 

 


同步練習(xí)冊(cè)答案