已知數(shù)列是等差數(shù)列. ,數(shù)列的前n項(xiàng)和是.且. 查看更多

 

題目列表(包括答案和解析)

(本小題14分)

已知數(shù)列的前n項(xiàng)和為,點(diǎn)在曲線.

(1)求數(shù)列的通項(xiàng)公式;

(2)數(shù)列的前n項(xiàng)和為且滿足,試確定的值,使得數(shù)列是等差數(shù)列;

(3)求證:.

查看答案和解析>>

(本小題14分)

已知等比數(shù)列滿足,且,的等差中項(xiàng).

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)若,,求使  成立的正整數(shù)的最小值.

 

查看答案和解析>>

(本小題14分)
已知等比數(shù)列滿足,且,的等差中項(xiàng).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,,求使  成立的正整數(shù)的最小值.

查看答案和解析>>

(本小題14分)
已知等比數(shù)列滿足,且的等差中項(xiàng).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求使  成立的正整數(shù)的最小值.

查看答案和解析>>

(本小題滿分14分)已知數(shù)列{}中,(n≥2,),

   (1)若,數(shù)列滿足),求證數(shù)列{}是等差數(shù)列;

   (2)若,求數(shù)列{}中的最大項(xiàng)與最小項(xiàng),并說明理由;

   (3)(理做文不做)若,試證明:

查看答案和解析>>

一、       選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

A

C

C

C

D

B

B

C

C

B

二、填空題

題號(hào)

     11

    12

   13  

  14(1)

  14(2)

答案

   6

  2

 

  3

三、解答題:本大題共6小題,共80分,解答應(yīng)寫出文字說明、證明過程或演算步驟.

15.解:(Ⅰ),不等式的解為,

(Ⅱ)由(Ⅰ)可知,

,

16、解:

 

  。↖)函數(shù)的最小正周期是        ……………………………7分

   (II)∴   ∴   

     ∴               

    所以的值域?yàn)椋?sub>                 …………12分

17、解:(1)因?yàn)?sub>,,成等差數(shù)列,所以2f(2)=f(1)+f(4),

即:2log2(2+m)=log2(1+m)+log2(4+m),即log2(2+m)2=log2(1+m)(4+m),得

(2+m)2=(1+m)(4+m),得m=0.

(2) 若、是兩兩不相等的正數(shù),且、、依次成等差數(shù)列,設(shè)a=b-d,c=b+d,(d不為0);

f(a)+f(c)-2f(b)=log2(a+m)+log2(c+m)-2log2(b+m)=log2

因?yàn)椋╝+m)(c+m)-(b-m)2=ac+(a+c)m+m2-(b+m)2=b2-d2+2bm+m2-(b+m)2=-d2<0

所以:0<(a+m)(c+m)<(b+m)2,得0<<1,得log2<0,

所以:f(a)+f(c)<2f(b).

18. 解:(Ⅰ)的定義域關(guān)于原點(diǎn)對(duì)稱

為奇函數(shù),則  ∴a=0

(Ⅱ)∴在上單調(diào)遞增

上恒大于0只要大于0即可,∴

上恒大于0,a的取值范圍為

19. 解:(Ⅰ)設(shè)的公差為,則:,

,,∴,∴. ………………………2分

.  …………………………………………4分

(Ⅱ)當(dāng)時(shí),,由,得.     …………………5分

當(dāng)時(shí),,

,即.  …………………………7分

  ∴.   ……………………………………………………………8分

是以為首項(xiàng),為公比的等比數(shù)列. …………………………………9分

(Ⅲ)由(2)可知:.   ……………………………10分

. …………………………………11分

.    ………………………………………13分

.  …………………………………………………14分

20.解:(Ⅰ)設(shè)函數(shù)

   (Ⅱ)由(Ⅰ)可知

可知使恒成立的常數(shù)k=8.

(Ⅲ)由(Ⅱ)知 

可知數(shù)列為首項(xiàng),8為公比的等比數(shù)列

即以為首項(xiàng),8為公比的等比數(shù)列. 則 

 


同步練習(xí)冊(cè)答案