20. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數(shù)

(1)證明:

(2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m    

(3)設(shè)數(shù)列滿足:,設(shè),

若(2)中的滿足對任意不小于2的正整數(shù),恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點軸上,點軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當點軸上移動時,求動點的軌跡方程;

(Ⅱ)過的直線與軌跡交于、兩點,又過、作軌跡的切線、,當,求直線的方程.

查看答案和解析>>

(本小題滿分14分)設(shè)函數(shù)

 (1)求函數(shù)的單調(diào)區(qū)間;

 (2)若當時,不等式恒成立,求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關(guān)于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數(shù),

(1)討論時, 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,;

(3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

(本小題滿分14分)

設(shè)數(shù)列的前項和為,對任意的正整數(shù),都有成立,記

(I)求數(shù)列的通項公式;

(II)記,設(shè)數(shù)列的前項和為,求證:對任意正整數(shù)都有

(III)設(shè)數(shù)列的前項和為。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

一、       選擇題

題號

1

2

3

4

5

6

7

8

9

10

答案

A

C

C

C

D

B

B

C

C

B

二、填空題

題號

     11

    12

   13  

  14(1)

  14(2)

答案

   6

  2

 

  3

三、解答題:本大題共6小題,共80分,解答應寫出文字說明、證明過程或演算步驟.

15.解:(Ⅰ),不等式的解為,

,

(Ⅱ)由(Ⅰ)可知,,

,

16、解:

 

  。↖)函數(shù)的最小正周期是        ……………………………7分

  。↖I)∴   ∴   

     ∴               

    所以的值域為:                 …………12分

17、解:(1)因為,,成等差數(shù)列,所以2f(2)=f(1)+f(4),

即:2log2(2+m)=log2(1+m)+log2(4+m),即log2(2+m)2=log2(1+m)(4+m),得

(2+m)2=(1+m)(4+m),得m=0.

(2) 若、、是兩兩不相等的正數(shù),且、、依次成等差數(shù)列,設(shè)a=b-d,c=b+d,(d不為0);

f(a)+f(c)-2f(b)=log2(a+m)+log2(c+m)-2log2(b+m)=log2

因為(a+m)(c+m)-(b-m)2=ac+(a+c)m+m2-(b+m)2=b2-d2+2bm+m2-(b+m)2=-d2<0

所以:0<(a+m)(c+m)<(b+m)2,得0<<1,得log2<0,

所以:f(a)+f(c)<2f(b).

18. 解:(Ⅰ)的定義域關(guān)于原點對稱

為奇函數(shù),則  ∴a=0

(Ⅱ)∴在上單調(diào)遞增

上恒大于0只要大于0即可,∴

上恒大于0,a的取值范圍為

19. 解:(Ⅰ)設(shè)的公差為,則:,,

,∴,∴. ………………………2分

.  …………………………………………4分

(Ⅱ)當時,,由,得.     …………………5分

時,,

,即.  …………………………7分

  ∴.   ……………………………………………………………8分

是以為首項,為公比的等比數(shù)列. …………………………………9分

(Ⅲ)由(2)可知:.   ……………………………10分

. …………………………………11分

.    ………………………………………13分

.  …………………………………………………14分

20.解:(Ⅰ)設(shè)函數(shù)

   (Ⅱ)由(Ⅰ)可知

可知使恒成立的常數(shù)k=8.

(Ⅲ)由(Ⅱ)知 

可知數(shù)列為首項,8為公比的等比數(shù)列

即以為首項,8為公比的等比數(shù)列. 則 

 


同步練習冊答案