題目列表(包括答案和解析)
已知函數(shù),若存在,則
稱是函數(shù)的一個不動點,設(shè)
(Ⅰ)求函數(shù)的不動點;
(Ⅱ)對(Ⅰ)中的二個不動點、(假設(shè)),求使
恒成立的常數(shù)的值;
已知函數(shù),若存在使得恒成立,則稱 是的
一個“下界函數(shù)” .
(I)如果函數(shù)(t為實數(shù))為的一個“下界函數(shù)”,
求t的取值范圍;
(II)設(shè)函數(shù),試問函數(shù)是否存在零點,若存在,求出零點個數(shù);
若不存在,請說明理由.
已知函數(shù),若存在使得恒成立,則稱 是的
一個“下界函數(shù)” .
(I)如果函數(shù)(t為實數(shù))為的一個“下界函數(shù)”,
求t的取值范圍;
(II)設(shè)函數(shù),試問函數(shù)是否存在零點,若存在,求出零點個數(shù);
若不存在,請說明理由.
已知函數(shù),若存在實數(shù)則稱是函數(shù)的一個不動點.
(I)證明:函數(shù)有兩個不動點;
(II)已知a、b是的兩個不動點,且.當(dāng)時,比較
的大;
(III)在數(shù)列中,,等式對任何正整數(shù)n都成立,求數(shù)列的通項公式.
一、 選擇題
題號
1
2
3
4
5
6
7
8
9
10
答案
A
C
C
C
D
B
B
C
C
B
二、填空題
題號
11
12
13
14(1)
14(2)
答案
6
2
3
三、解答題:本大題共6小題,共80分,解答應(yīng)寫出文字說明、證明過程或演算步驟.
15.解:(Ⅰ),不等式的解為,
,
(Ⅱ)由(Ⅰ)可知,,
,
16、解:
。↖)函數(shù)的最小正周期是 ……………………………7分
。↖I)∴ ∴
∴
所以的值域為: …………12分
17、解:(1)因為,,成等差數(shù)列,所以
即:2log2(2+m)=log2(1+m)+log2(4+m),即log2(2+m)2=log2(1+m)(4+m),得
(2+m)2=(1+m)(4+m),得m=0.
(2) 若、、是兩兩不相等的正數(shù),且、、依次成等差數(shù)列,設(shè)a=b-d,c=b+d,(d不為0);
f(a)+f(c)
因為(a+m)(c+m)-(b-m)2=ac+(a+c)m+m2-(b+m)2=b2-d2+2bm+m2-(b+m)2=-d2<0
所以:0<(a+m)(c+m)<(b+m)2,得0<<1,得log2<0,
所以:f(a)+f(c)<
18. 解:(Ⅰ)的定義域關(guān)于原點對稱
若為奇函數(shù),則 ∴a=0
(Ⅱ)∴在上∴在上單調(diào)遞增
∴在上恒大于0只要大于0即可,∴
若在上恒大于0,a的取值范圍為
19. 解:(Ⅰ)設(shè)的公差為,則:,,
∵,,∴,∴. ………………………2分
∴. …………………………………………4分
(Ⅱ)當(dāng)時,,由,得. …………………5分
當(dāng)時,,,
∴,即. …………………………7分
∴. ……………………………………………………………8分
∴是以為首項,為公比的等比數(shù)列. …………………………………9分
(Ⅲ)由(2)可知:. ……………………………10分
∴. …………………………………11分
∴.
∴.
∴
. ………………………………………13分
∴. …………………………………………………14分
20.解:(Ⅰ)設(shè)函數(shù)
(Ⅱ)由(Ⅰ)可知
可知使恒成立的常數(shù)k=8.
(Ⅲ)由(Ⅱ)知
可知數(shù)列為首項,8為公比的等比數(shù)列
即以為首項,8為公比的等比數(shù)列. 則
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com