(C) (D) 查看更多

 

題目列表(包括答案和解析)

3、(北京卷理1)集合P={x∈Z|0≤x<3},M={x∈Z|x2<9},則P∩M=( 。

查看答案和解析>>

(中三角函數(shù)的奇偶性及周期)下列函數(shù)中是奇函數(shù),且最小正周期是π的函數(shù)是( 。
A、y=tan2x
B、y=|sinx|
C、y=sin(
π
2
+2x)
D、y=cos(
2
-2x)

查看答案和解析>>

(易向量的概念)下列命題中,正確的是( 。
A、若a∥b,則a與b的方向相同或相反B、若a∥b,b∥c,則a∥cC、若兩個單位向量互相平行,則這兩個單位向量相等D、若a=b,b=c,則a=c

查看答案和解析>>

(文)設a∈R,則a>1是
1
a
<1 的( 。
A、必要但不充分條件
B、充分但不必要條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

1、c≠0是方程 ax2+y2=c表示橢圓或雙曲線的( 。

查看答案和解析>>

一、選擇題(每小題5分,共60分)

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

C

A

B

B

C

C

D

D

D

A

A

 

二、填空題(每小題5分,共20分)

13.         14.       15. 1            16.

三、簡答題

17.解:依題記“甲答對一題”為事件A ;“乙答對一題”為事件B

2分

∴ξ的分布列:

ξ

0

1

2

P

                                                          8分

                              10分

18.解:當時,原式                              3分

時,有                             

∴原式=                           7分

時,

∴原式                                                   11分

綜上所述:                              12分

19.解:設切點(),                                              3分

∵切線與直線平行

          或                        10分

∴切點坐標(1,-8)(-1,-12)

∴切線方程:

即:                                               12分

21.解:設底面一邊長為,則另一邊長

∴高為                                    3分

由:            ∴

∵體積

                                       6分

(舍去)

只有一個極值點

,此時高1.2m,最大容積為         11分

答:高為1.2m 時體積最大,最大值為1.8              12分

22.解:假設存在

時,由即:

時,   ∴

猜想:

證明:1. 當時,已證

         2. 假設時結論成立

      

即為時結論也成立

由(1)(2)可知,對大于1的自然數(shù)n,存在,使成立                                                             12分


同步練習冊答案