6.已知四面體.平面.是棱的中點(diǎn)..則異面 查看更多

 

題目列表(包括答案和解析)

已知四面體ABCD,AD⊥平面BCD,M是棱AB的中點(diǎn),AD=CM=2,則異面直線AD與CM所成的角等于

[  ]

A.30°

B.45°

C.60°

D.90°

查看答案和解析>>

已知四面體ABCD,AD⊥平面BCD,M是棱AB的中點(diǎn),AD=CM=2,則異面直線AD與CM所成的角等于

[  ]

A.30°

B.45°

C.60°

D.90°

查看答案和解析>>

精英家教網(wǎng)已知四棱錐P-ABCD的底面ABCD是邊長(zhǎng)為2的正方形,PD⊥底面ABCD,E,F(xiàn)分別為棱BC,AD的中點(diǎn).
(Ⅰ)求證:DE∥平面PFB;
(Ⅱ)已知二面角P-BF-C的余弦值為
6
6
,求四棱錐P-ABCD的體積.

查看答案和解析>>

精英家教網(wǎng)已知四棱錐P-ABCD的三視圖如圖.
(1)求四棱錐P-ABCD的體積;
(2)若E是側(cè)棱PC的中點(diǎn),求證:PA∥平面BDE;
(3)若E是側(cè)棱PC上的動(dòng)點(diǎn),不論點(diǎn)E在何位置,是否都有BD⊥AE?證明你的結(jié)論.

查看答案和解析>>

精英家教網(wǎng)已知四邊形ABCD為菱形,AB=6,∠BAD=60°,兩個(gè)正三棱錐P-ABD、S-BCD(底面是正三角形且頂點(diǎn)在底面上的射影是底面正三角形的中心)的側(cè)棱長(zhǎng)都相等,如圖,E、M、N分別在AD、
AB、AP上,且AM=AE=2,AN=
13
AP,MN⊥PE

(Ⅰ)求證:PB⊥平面PAD;
(Ⅱ)求平面BPS與底面ABCD所成銳二面角的平面角的正切
值;
(Ⅲ)求多面體SPABC的體積.

查看答案和解析>>

一、選擇題:

   1.D  2.A  3.B  4.B   5.A  6.C  7.D   8.C   9.B  10.B  11.C  12.B

2,4,6

13.    14.7   15.2    16.

17.17.解:(1)  --------------------2分

 --------------------4分

--------------------6分

.--------------------8分

當(dāng)時(shí)(9分),取最大值.--------------------10分

(2)當(dāng)時(shí),,即,--------------------11分

解得,.-------------------- 12分

18.解法一 “有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,記“有放回摸球兩次,兩球恰好顏色不同”為事件A,

∵“兩球恰好顏色不同”共2×4+4×2=16種可能,

解法二  “有放回摸取”可看作獨(dú)立重復(fù)實(shí)驗(yàn)∵每次摸出一球得白球的概率為

∴“有放回摸兩次,顏色不同”的概率為

(2)設(shè)摸得白球的個(gè)數(shù)為,依題意得

19.方法一

 

   (2)

20.解:(1)

  ∵ x≥1. ∴ ,-----------------------------------------------------2分

   (當(dāng)x=1時(shí),取最小值).

  ∴ a<3(a=3時(shí)也符合題意). ∴ a≤3.------------------------------------4分

 。2),即27-6a+3=0, ∴ a=5,.------------6分

,或 (舍去) --------------------------8分

當(dāng)時(shí),; 當(dāng)時(shí),

  即當(dāng)時(shí),有極小值.又    ---------10分

   ∴ fx)在,上的最小值是,最大值是. ----------12分

21.解:(Ⅰ)∵,∴,

∵數(shù)列{}的各項(xiàng)均為正數(shù),∴,

),所以數(shù)列{}是以2為公比的等比數(shù)列.………………3分

的等差中項(xiàng),

,

,∴,

∴數(shù)列{}的通項(xiàng)公式.……………………………………………………6分

   (Ⅱ)由(Ⅰ)及=得,, ……………………………8分

      1

   ②

②-1得,

=……………………………10分

要使S>50成立,只需2n+1-2>50成立,即2n+1>52,n³5

∴使S>50成立的正整數(shù)n的最小值為5. ……………………………12分

22.解:(Ⅰ)由已知得

 

              …………4分

  (Ⅱ)設(shè)P點(diǎn)坐標(biāo)為(x,y)(x>0),由

        

                       …………5分    

         ∴   消去m,n可得

             ,又因     8分 

        ∴ P點(diǎn)的軌跡方程為  

        它表示以坐標(biāo)原點(diǎn)為中心,焦點(diǎn)在軸上,且實(shí)軸長(zhǎng)為2,焦距為4的雙曲線

的右支             …………9分

(Ⅲ)設(shè)直線l的方程為,將其代入C的方程得

        

        即                          

 易知(否則,直線l的斜率為,它與漸近線平行,不符合題意)

        又     

       設(shè),則

       ∵  l與C的兩個(gè)交點(diǎn)軸的右側(cè)

          

       ∴ ,即     

又由  同理可得       …………11分

        由

       

     ∴

   由

           

  由

           

消去

解之得: ,滿足                …………13分

故所求直線l存在,其方程為:  …………14分

 

 


同步練習(xí)冊(cè)答案
<strike id="nrhip"></strike>

    <ins id="nrhip"><del id="nrhip"><pre id="nrhip"></pre></del></ins>