C. D. 查看更多

 

題目列表(包括答案和解析)

C.選修4-4:坐標系與參數(shù)方程
在極坐標系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標方程;(2)當時,求直線與圓O公共點的一個極坐標.
D.選修4-5:不等式證明選講
對于任意實數(shù),不等式恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

C.選修4-4:坐標系與參數(shù)方程
在極坐標系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標方程;(2)當時,求直線與圓O公共點的一個極坐標.
D.選修4-5:不等式證明選講
對于任意實數(shù),不等式恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B錯;≥4,故A錯;由基本不等式得,即,故C正確;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D錯.故選C.

查看答案和解析>>

定義域為R的函數(shù)滿足,且當時,,則當時,的最小值為( )

A B C D

 

查看答案和解析>>

.過點作圓的弦,其中弦長為整數(shù)的共有  ( 。    

A.16條          B. 17條        C. 32條            D. 34條

 

查看答案和解析>>

 

一、選擇題

ACADB   BBCAB

二、填空題

11.1   12.-6   13.0   14.4    15.450  16.31030

 

三、解答題:

17.(1)恰有3個紅球的概率為                                     …………5分

   (2)停止摸球時,已知摸到紅球次數(shù)為三次記為事件B

則事件B發(fā)生所摸球的次數(shù)為3次 4次或5次                       …………8分

所以              …………12分

 

18.解:設           …………2分

    即

                                              …………4分

   (1)當

                                                                 …………8分

   (2)當上是增函數(shù),

    所以

    故                                           …………12分

 

19.解:(I)依題意

   

                                       …………3分

    故上是減函數(shù)

   

    即                                                            ……………6分

   (II)由(I)知上的減函數(shù),

    又

                                                                    …………9分

    故

    因此,存在實數(shù)m,使得命p且q為真命題,且m的取值范圍為

                                                                    …………12分

 

20.解:(1),                                           …………2分

    由題知:;                  …………6分

   (2)由(1)知:,                            …………8分

    恒成立,

    所以:                                 …………12分

 

21.解:(1)上,

    ,                                                                 …………1分

    為首項,公差為1的等差數(shù)列,

                                 …………4分

    當,

                                                                    …………6分

    證明:(II)

    ,…………8分

    ,

    …………14分

 

22.解:(I)函數(shù)內(nèi)是奇函數(shù)等價于

    對任意                                …………2分

   

    即,…………4分

    因為,

    即,                                                                    …………6分

    此式對任意,

    所以得b的取值范圍是                                                 …………8分

   (II)設任意的

    得,                                            …………10分

    所以,                   …………12分

    從而

    因此內(nèi)是減函數(shù),具有單調(diào)性。                      …………14分

 

 


同步練習冊答案